

Recipes with Backbone
Nick Gauthier and Chris Strom

Recipes with Backbone
Nick Gauthier and Chris Strom

iii

Table of Contents
History .. vii
Introduction .. viii

1. Who Should Read this Book .. viii
2. Contact Us ... ix
3. How this Book is Organized ... ix

1. Writing Client Side Apps (Without Backbone) ... 1
1.1. Working with Dates .. 1

2. Writing Backbone Applications ... 6
2.1. Converting to Backbone.js .. 7
2.2. Models ... 10
2.3. Views ... 11
2.4. Additional Reading .. 18
2.5. Conclusion ... 18

3. Namespacing ... 19
3.1. The Problem .. 19
3.2. The Solution .. 19

3.2.1. Alternative #1: Global Object Namespace ... 19
3.2.2. Alternative #2: Javascript Function Constructor 21

3.3. Conclusion ... 27
4. Organizing with Require.js .. 28

4.1. The Problem .. 28
4.2. The Solution .. 28

4.2.1. Requiring Other Things .. 34
4.2.2. Optimization / Asset Packaging ... 35

4.3. Conclusion ... 38
5. View Templates with Underscore.js .. 39

5.1. The Problem .. 39
5.2. The Solution .. 39

5.2.1. Avoid Script Tag Templates .. 43
5.2.2. ERB Sucks {{ Use Mustache }} .. 45
5.2.3. Avoid Evaluation .. 47

5.3. Conclusion ... 48
6. Instantiated View .. 49

6.1. Introduction .. 49

Recipes with Backbone

iv

6.2. The Problem .. 49
6.3. The Solution .. 50
6.4. Conclusion ... 51

7. Collection View .. 52
7.1. Introduction .. 52
7.2. The Problem .. 52
7.3. The Solution .. 53
7.4. Conclusion ... 57

8. View Signature ... 58
8.1. Introduction .. 58
8.2. The Problem .. 58
8.3. The Solution .. 58

8.3.1. What is a Signature? .. 59
8.3.2. Signature Module ... 59
8.3.3. A Simple Example: MD5 ... 60
8.3.4. A Fast Example: Model Data ... 61

9. Fill-In Rendering .. 63
9.1. Introduction .. 63
9.2. The Problem .. 63
9.3. The Solution .. 64
9.4. A Quick Refactor .. 65
9.5. Conclusion ... 66

10. Actions and Animations ... 67
10.1. Introduction .. 67
10.2. The Problem .. 67
10.3. The Solution .. 68
10.4. Conclusion ... 70

11. Reduced Models and Collections ... 71
11.1. Introduction .. 71
11.2. The Problem .. 71
11.3. The Solution .. 72

11.3.1. Simple Solution: A View ... 72
11.3.2. Better Solution: A Reduced Collection .. 73

11.4. Conclusion ... 76
12. Non-REST Models ... 78

12.1. Introduction .. 78

Recipes with Backbone

v

12.2. The Problem .. 78
12.3. The Solution .. 78

12.3.1. Special Action .. 78
12.3.2. Special Persistence Layer ... 80

12.4. Conclusion ... 82
13. Changes Feed ... 83

13.1. Introduction .. 83
13.2. The Problem .. 83
13.3. Changes feed on a Collection ... 83
13.4. Conclusion ... 86

14. Pagination and Search .. 88
14.1. Introduction .. 88
14.2. The Problem .. 88
14.3. The Solution .. 88

14.3.1. Search ... 88
14.3.2. Pagination ... 90

14.4. Conclusion ... 94
15. Constructor Route ... 95

15.1. The Problem .. 95
15.1.1. A simple specific route ... 95

15.2. The Solution .. 98
15.3. Conclusion ... 102

16. Router Redirection .. 103
16.1. Introduction .. 103
16.2. The Problem .. 103
16.3. The Solution .. 103

16.3.1. Default Routes .. 111
16.4. Conclusion ... 112

17. Evented Routers ... 113
17.1. Introduction .. 113
17.2. The Problem .. 113
17.3. The Solution .. 114
17.4. Conclusion ... 117

18. Object References in Backbone ... 118
18.1. Precipitation Pattern .. 120
18.2. Dependency Injection .. 121

Recipes with Backbone

vi

18.3. Conclusion ... 124
19. Custom Events .. 125

19.1. Introduction .. 125
19.2. The Problem .. 125
19.3. The Solution .. 125

19.3.1. Application Triggered Events ... 126
19.3.2. User Triggered Events .. 129

19.4. Conclusion ... 130
20. Testing with Jasmine .. 132

20.1. The Problem .. 132
20.2. The Solution .. 132

20.2.1. Ingredients .. 133
20.2.2. Integration Testing with Jasmine .. 133
20.2.3. Unit Testing .. 138

20.3. Conclusion ... 142
A. Getting Started with Jasmine .. 143

A.1. Your First Jasmine Test ... 143
A.2. Jasmine Standalone ... 146
A.3. Jasmine (Ruby) Server ... 149

A.3.1. Continuous Integration .. 152

vii

History
• 2011-09-30: Initial alpha release

• 2011-10-06: New recipes: "Non-REST Model" and "Reduced Models and Collections"

• 2011-10-19: New recipes: "Constructor Route" and "Router Redirection". Minor copy
edits.

• 2011-10-24: New recipes: "Changes Feed" and "Object References in Backbone".

• 2011-10-31: Beta. New recipes: "Underscore Templates", "Pagination and Search",
"Evented Routes", and "Custom Events". Converted all CoffeeScript code samples to
Javascript. Many corrections (thanks to Ben Morris, Geoffrey Grosenbach).

• 2011-11-30: 1.0 New intro chapters and an appendix on testing with Jasmine. Many,
many corrections.

• 2011-12-02: Fix a couple of typos in the introduction chapters (thanks to Luigi
Montanez).

• 2011-12-07: More typos / grammar corrections (thanks Martin Harrigan, "jdkealy", and
Bob Spryn).

• 2011-12-31: Ensure that code blocks do not split across pages. Tweak to better support
Kindle Fire. Additional typo fixes. Much thanks to David Mosher and "simax" for
pointing these out.

• 2012-01-02: New Require.js recipe. Sample code fix (de-ruby-ify some Javascript)—
thanks to "simax" for identifying the problem.

• 2012-01-18: New Jasmine strategies recipe. Typo fix in the underscore recipe—thanks
"Hudon689" for the keen eye.

viii

Introduction
During its brief existence, Backbone.js has enjoyed tremendous popularity from the
web development community. As one of the first "micro-frameworks" to hit the scene,
it captured the hearts and minds of developers that had previously been struggling with
much heavier frameworks—many of which had a learning curve similar to learning a new
programming language.

A significant appeal of Backbone is how small it is. A seasoned developer can pick
it up in a day and start cranking out robust code in no time. Its parent organization,
DocumentCloud 1, has outstanding documentation and has collected a nice set of tutorial
applications. This low barrier to entry coupled with significant power is compelling.

Another appeal is how very agnostic Backbone is about, well… everything. It makes
no assumptions about templating libraries that will populate the UI of the application. It
defaults to persisting data over a REST layer, but even that is easy to swap out. The power
afforded by Backbone, comes from the application structure chosen (models, collections of
models, and views) and the convention it describes for different concepts to interact with
each other.

The downside of such a simple and agnostic framework is that it can be easy to take
approaches that end up being less than ideal as time goes by. We know. We have made
these mistakes and have felt the pain of ripping significant chunks of code out so that we
could better leverage the browser, the network or the datastore.

In this book, you will find a collection of the strategies that we have found to be most
effective. We will discuss the situations in which they apply and how our initial attempts at
solving problems common to all Backbone applications failed and why these recipes have
been successful.

1. Who Should Read this Book
This book is not meant as an introduction to Backbone.js. We will provide a quick
introduction, but only enough to provide foundation for many of the recipes later in

1http://www.documentcloud.org/

http://www.documentcloud.org/

Introduction

ix

the book. For a solid introduction to Backbone.js, see the online documentation 2. It is
excellent. Or better yet, read the source code. It is very approachable Javascript code and
is, as you should come to expect of Backbone.js, self-documented very nicely.

This book also assumes a fair level of Javascript knowledge. If you have read "Javascript:
The Good Parts" 3, you should be in good shape. If not, do it—it is a small book with
excellent discussion of what makes Javascript such a nice language.

2. Contact Us
If you have thoughts or suggestions, we would love to hear from you!

If you find any mistakes or have any suggestions, please do not hesitate
to let us know by adding an item to our TODO list (https://github.com/
recipeswithbackbone/recipeswithbackbone.github.com/issues) or by dropping us a line at
errata@recipeswithbackbone.com.

We will update the mailing list whenever a new version is ready to be downloaded 4, so
make sure that you are subscribed.

3. How this Book is Organized
We have structured this book so that concepts are introduced from the bottom-up.

We start with a brief introduction to client-side development in the days prior to Backbone
(Chapter 1, Writing Client Side Apps (Without Backbone)) and then discuss how our
poor application might be better served by Backbone (Chapter 2, Writing Backbone
Applications). These introductory chapters also serve to introduce the sample application
with which we will work through many of the recipes. If you are an experienced
Backbone.js coder, you can safely skip these introductory chapters.

Next come some "fundamentals" recipes. The first two describe different strategies for
Backbone.js organization. Chapter 3, Namespacing, is intended for smaller applications.

2http://documentcloud.github.com/backbone/
3"Javascript the Good Parts": http://shop.oreilly.com/product/9780596517748.do
4This book’s mailing list: http://eepurl.com/fqMy2

https://github.com/recipeswithbackbone/recipeswithbackbone.github.com/issues
https://github.com/recipeswithbackbone/recipeswithbackbone.github.com/issues
http://documentcloud.github.com/backbone/
http://shop.oreilly.com/product/9780596517748.do
http://eepurl.com/fqMy2

Introduction

x

The next, Chapter 4, Organizing with Require.js, introduces the very powerful require.js
library as an effective means for working with larger Backbone.js codebases. Last up
in this section is Chapter 5, View Templates with Underscore.js, which introduces the
surprisingly powerful built-in templating tool.

With the preliminaries out of the way, we dive into Backbone.js view objects, which
is where a surprising amount of action takes place. First up is Chapter 6, Instantiated
View, which is useful when views only need to be created once. Next is Chapter 7,
Collection View, which is essential for working with collections. Then we move into a
couple of performance optimization recipes: Chapter 8, View Signature and Chapter 9,
Fill-In Rendering. We finish up views with a little eye candy: Chapter 10, Actions and
Animations.

The next section of the book contains recipes for working with models and collections.
First up is an interesting little recipe describing how to work with statistical and
aggregating objects: Chapter 11, Reduced Models and Collections. Following that is
Chapter 12, Non-REST Models, which introduces working with legacy server code (sadly
it is quite useful). Next comes Chapter 13, Changes Feed, which gives some nice tips
on how to make your Backbone applications even more dynamic. Lastly is Chapter 14,
Pagination and Search.

In the routing section of the book, we start off with Chapter 15, Constructor Route, which
describes an interesting little pattern that can significantly decrease the amount of code
required in your Backbone applications. Next comes the Chapter 16, Router Redirection
which serves up some tricks for implementing redirection-like behaviors in Backbone.
Last up is Chapter 17, Evented Routers which similarly discusses strategies for keeping
your routes DRY.

We finish up the book with two recipes that did not quite fit anywhere else, but are definite
must-reads. First is Chapter 18, Object References in Backbone. If you read nothing
else in this book, read this as it gives a top-down philosophy for building Backbone.js
applications that will be applicable almost anywhere. We finish up with a discussion of
Chapter 19, Custom Events.

If you are still hungry for more, dig into our appendices where we discuss Appendix A,
Getting Started with Jasmine.

Excited? Let’s get started!

1

Chapter 1. Writing Client Side Apps
(Without Backbone)

Before jumping into Backbone.js development, let’s take a stroll through life without it.
This is not meant to serve as a straw man argument so that in the end, we can jump up and
say "look how awesome Backbone.js is!" To be sure, Backbone.js is awesome, but this
exercise is meant to give you an idea of where Backbone provides structure. Once we have
made it through this exercise, we will be left with a number of questions as to what the
next steps should be. Without backbone, these questions would be left to us to answer.

For most of the book, we are going to be discussing Backbone in relationship to a
Calendaring application. Here, we will try to get a month view up and running using
nothing but server-side code and jQuery. Surely we can do this—our forefathers have been
doing this kind of thing for dozens of months.

For our purposes, let’s assume that the server is responsible for drawing the HTML of the
calendar itself, while the client must make a call to a web service to load appointment for
that calendar. Sure, this is a conceit, but it is a conceit born of a thousand implementations
in the wild.

1.1. Working with Dates
This is not news, but working with dates in Javascript is not pleasant. We will keep it to a
minimum, in part by using the ISO 8601 date format 1. ISO 8601 date/times take the form
of "YYYY-MM-DD HH:MM:SS TZ" 2. The date that the first edition of this book was
published can be represented as "2011-11-30".

The brilliant simplicity of ISO 8601 is that anyone can read it—even Americans who tend
to represent date in nonsensical order. There is no doubt that 2011-11-12 represents the

1http://en.wikipedia.org/wiki/ISO_8601
2The official ISO 8601 representation of a datetime includes a T in between the date and the time
(2011-11-30T23:59:59). We prefer omitting the T to aid in human readability without degrading machine
parsing (2011-11-30 23:59:59)

http://en.wikipedia.org/wiki/ISO_8601

Writing Client Side Apps
(Without Backbone)

2

12th of November, whereas Americans think that 12/11/2011 is the 11th of December,
the civilized world know this to be the 12th day of the 11th month of 2011. Reading dates
when the units increase or decrease from left-to-right just makes sense.

It even makes sense to a machine since, although "2011-11-12" and "2011-11-30"
are strings, they can still be compared by any programming language. Machines simply
compare the two as strings. Since the "2" and "2" are the same, it compares the next two
characters in the string (both "0"). Eventually, the "3" and "1" are reached in the days of
the month place. Since the character "3" is greater than the character "1", the following
would be true regardless of language: "2011-11-30" > "2011-11-12".

Armed with that knowledge, we make the ID element of the table cells ISO 8601 dates,
corresponding to the date that the cell represents.

<table>
 <tr>
 <th>S</th><th>M</th><th>T</th><th>W</th>
 <th>T</th><th>F</th><th>S</th>
 </tr>
 <tr>
 <td id="2012-01-01">1</td>
 <td id="2012-01-02">2</td>
 <td id="2012-01-03">3</td>
 <td id="2012-01-04">4</td>
 <td id="2012-01-05">5</td>
 <td id="2012-01-06">6</td>
 <td id="2012-01-07">7</td>
 </tr>
 <tr><!-- ... --></tr>
 <tr><!-- ... --></tr>
 <tr><!-- ... --></tr>
 <tr><!-- ... --></tr>
</table>

That HTML might generate a calendar that displays something like this in a browser:

Writing Client Side Apps
(Without Backbone)

3

So far we have nothing more than a static calendar page. To make things a little more
interesting, we add a jQuery AJAX request to the backend asking for all appointments in
January:

 $(function() {
 $.getJSON('/appointments', function(data) {
 $.each(data.rows, function(i, rec) { add_apppointment(rec) });
 });
 });

That request of the /appointments resource will return JSON that includes a rows
attribute. For each record in the list of rows, we want to add a corresponding appointment
to the the calendar.

{"total_rows":2,"offset":0,"rows":[
 {"id": "appt-1",
 "startDate": "2012-01-01",
 "title": "Recover from Hangover",
 "description": "Hair of the dog that bit you."},
 {"id": "appt-2",
 "startDate": "2012-01-02",
 "title": "Quit drinking",
 "description": "No really, I mean it this year"}
]}

Writing Client Side Apps
(Without Backbone)

4

The add_appointment function need not be anything fancy if we simply want the
appointment to display. Something along the lines of the following will suffice:

function add_appointment(appointment) {
 var date = appointment.startDate,
 title = appointment.title,
 description = appointment.description;

 $('#' + date).append(
 '' +
 title +
 ''
);
}

Do you see the ISO 8601 trick in there? The startDate attribute is represented as an ISO
8601 date (e.g. "2012-01-01"). The cells in our calendar <table> also have IDs that
correspond to the ISO 8601 date:

 <tr>
 <td id="2012-01-01">1</td>
 <!-- ... -->
 </tr>

Thus, by appending the appointment HTML to $('#' + date'), we are really appending
to $('#2012-01-01') or the date cell for New Year’s day. Simple clever 3, eh?

Using this strategy, we could fetch 3 years worth of appointments from the backend and
run each through the add_appointment function. An appointment from New Year’s Day
2010 would not be appended to the calendar because there is no calendar table cell with
an ID of $('#2010-01-10'). That jQuery selector would produce an empty wrapped set,
which results in no change.

The authors have been using a similar technique since the 1900s to great effect. For more
than 10 years, it has been possible to do something like this and we did not need any fancy
Javascript MVC framework.

So why do we need one now?

3as opposed to clever clever which is always a bad idea

Writing Client Side Apps
(Without Backbone)

5

The answer to that question is what comes next. As in "What comes next in my calendar
application?" Perhaps the user needs to move appointments between dates. Or maybe add
new appointments / delete old ones. Regardless of what comes next, we are going to need
to answer how. And how is the realm of Backbone.js.

Sure we might continue coming up with clever hacks like the ISO 8601 trick for our
calendar. But with each clever hack, we risk making the code harder to approach for the
next developer.

How do you future proof? How can you be sure that your approach will be understood by
the next developer? How can you know that today’s simple cleverness will still be easy to
read in 3 months?

The answer is to not choose. Rather, let Backbone show you the way.

And that is where we begin in the next chapter…

6

Chapter 2. Writing Backbone
Applications

Having gone through the exercise of loading appointments over AJAX, a picture begins
to form of how it will evolve. There will be navigation buttons to move back and forth
between months. Controls will need to be added to switch between month, week, and
day views. At some point, our calendar will need to create, update, move, and delete
appointments on the calendar. To compete in the market, it will even need to support
"fancy" features like scheduling recurring appointments and appointments on the second
Tuesday of every month.

And throughout the evolution of such features, our calendar application needs to remain
nice and snappy. It also needs to be able to store appointments in the backend quickly—
again without impacting the performance of the UI.

Changing views from month to week to day does not seem all that hard. We could
include hidden <div> tags to hold those views, showing them when the user chooses the
appropriate control:

<div id="calendar">
 <div class="month-view">
 <!-- ... -->
 </div>
 <div class="week-view" style="display:none">
 <!-- ... -->
 </div>
 <div class="day-view" style="display:none">
 <!-- ... -->
 </div>
</div>

Now, when updates are made, we need to make sure that they apply to each of the three
views. It will not do to create an appointment in the month view, only to have it disappear
when switching to the day view.

Instead of updating three different views each time a change occurs, perhaps it would
be better to store a copy of all appointments in a global variable. That would allow us to
switch quickly between views without needing to make calls to the server each time.

Writing Backbone
Applications

7

But how will the server get notified when appointments change? How does that global data
structure coordinate updates with the server for persistent storage? How do edit / change
dialogs coordinate changes with this local store, the server and the current view?

Being developers, we are already starting to envision strategies for handling all this.
Coming up with an API to manipulate that local data store. Maybe broadcast some global
custom events when changes occur. Ooh! Maybe an API that wraps around the calls to the
server…

Yes, there is a lot that we can do here. We could probably solve all of these problems and
others that we have not even thought up yet, given enough time. Some of us might even
come up with an almost elegant solution.

But the entire time that we are doing all of this, we are not focusing on our application. We
are building infrastructure, not value for our customers.

Instead, let’s use Backbone.js…

2.1. Converting to Backbone.js
To collect appointments from the server in our vanilla AJAX solution, we are making a
jQuery getJSON() call:

 $(function() {
 $.getJSON('/appointments', function(data) {
 $.each(data.rows, function(i, rec) { add_appointment(rec) });
 });
 });

As is, this fetches the data from the server, displays it, and then promptly forgets about it.

In a Backbone application, the retrieval of a list of objects is always retained locally in
a Collection. Once stored, Views can be attached to display the individual objects in a
collection. They are not rendered immediately by the Collection as we did in our vanilla
AJAX solution. Rather, views spring into existence when the application is started or in
response to events.

The reason that Backbone uses a stand-alone Collection like this is so that the Collection
can be used as something of a junction for events. If an individual object in the collection

Writing Backbone
Applications

8

changes, it can generate a little event, which will bubble up through the collection and be
passed along to any interested observers.

For instance, if an appointment is removed from the Collection, it will generate a "remove"
event. The view responsible for displaying this particular appointment can then remove
itself from the page. Just as importantly, summary views (e.g. number of events this
month) can also listen for the "remove" event, using it as a signal to update themselves.

To actually define one of these Collections, we need to use the built-in extend method to
extend Backbone.Collection into something specific to our appointment:

var Appointments = Backbone.Collection.extend({
 model: Appointment,
 url: '/appointments'
});

That defines an Appointments class, which will retrieve lists of events from the same
server on which the Backbone application originated. Instead of retrieving the homepage
or a URL specific to the Backbone application, the Collection will retrieve from a REST-
like resource 1.

Backbone convention is such that the collection is not responsible for converting the
results of fetching the URL. Rather, the collection simply takes the list of attributes 2 and
sends each in turn to the model constructor specified by the model attribute. As we will see
throughout this book, the separation of collections of models and models themselves have
some fairly astounding implications. Here, it is enough to see that our Collection class is
incredibly small.

This is a class, not the actual object that retrieves and stores collection data. For that,
we need an instance of the collection. Instances are generally done inside a Backbone’s

1REST is a convention for how to interact with objects stored on the server. If the list of appointments can be
retrieved from /appointments, then an appointment with ID 42 can be retrieved from /appointments/42.
To create a new appointment, a client would need to POST the /appointments URL. To update an
appointment, the client would PUT to /appointments/42. To delete an appointment, use the HTTP verb
to DELETE /appointments/42. This is a gross over simplification of REST. See the appendix for more
resources.
2If the results of the URL are not a pure list of attributes, they can be "parsed" in the collection. For an example of
doing this with CouchDB, see: http://japhr.blogspot.com/2011/08/converting-to-backbonejs.html

http://japhr.blogspot.com/2011/08/converting-to-backbonejs.html

Writing Backbone
Applications

9

constructor. For very simple Backbone applications, this might be done in a jQuery
onDocumentReady callback:

$(function() {
 var appointments = new Appointments();
 appointments.fetch();
});

Here we have created an empty collection object. To populate it, we invoke the fetch()
method. As described, fetch() makes an AJAX request of the server, converting the list
of attributes returned into individual model objects.

If possible, it is generally considered good practice to create the collection store already
populated:

$(function() {
 var appointments = Appointments.reset(
 [{startDate: "2011-12-31", /* ... */ },
 {startDate: "2012-01-01", /* ... */ },
 {startDate: "2012-01-02", /* ... */ },
 /* ... */
]
);
});

This would initialize the store with 3+ appointments that are immediately available to be
consumed and displayed by Backbone views. Doing something like this is only a good
idea if the seed data is readily available. If there is any latency, then it is better to present
an empty shell of the application to be filled in as quickly as possible by a subsequent
fetch().

This is all well and good, but so far we have only succeeded in retrieving data into a
collection store. Unless we can display that information to the user, an awesome collection
store is of no real benefit. Happily, Backbone views work quite well with this collection
store.

But first we need to define the underpinning of that collection: the model.

Writing Backbone
Applications

10

2.2. Models
Before looking at Views, let’s take a quick peek at Backbone models. To completely
reproduce our pure AJAX version of the calendar application, almost nothing is required:

var Appointment = Backbone.Model.extend({});

With that, the collection store is now capable of creating individual objects within the
collection. Any attributes defined by the the collection’s /appointments URL resource
will be passed along to the model. To access those attributes—either directly or, more
likely, from a View—we can use the get() method:

var firstAppointment = appointments.at(0)

var firstStartDate = firstAppointment.get('startDate')

The above extracts the first appointment model from the collection. From first
appointment, we can get the "startDate" attribute.

Tip

In practice, it is quite rare to access individual models in a collection with at().
Typically, you should attach views to each member of the collection and have them
render as appropriate. The at() method can be useful in testing, but in live code it
is generally a code smell.

Since the goal of this exercise is to be able to update appointments as well as retrieve
them, we need to make one other change to our Appointment model. Specifically, we
need to tell it where it can access the corresponding server resource:

var Appointment = Backbone.Model.extend({
 url: '/appointments'
});

Amazingly, that is all that Backbone requires. This is because Backbone expects to
interact with REST-like server resources. Given that, the above is all that Backbone needs
to know so that it can POST new appointments to /appointments, PUT updates to /
appointments/42, and DELETE at /appointments/42.

Writing Backbone
Applications

11

Tip

Of course, Backbone does not limit you to REST-like server code. See Chapter 12,
Non-REST Models for more information.

At this point, we can retrieve and update appointments. And yet we still have no vehicle
for an actual user to do this. Let’s change that next as we describe our first views….

2.3. Views
Just as in our vanilla AJAX application, the server is generating a month view that looks
something like this:

<table>
 <tr>
 <th>S</th><th>M</th><th>T</th><th>W</th>
 <th>T</th><th>F</th><th>S</th>
 </tr>
 <tr>
 <td id="2012-01-01">1</td>
 <td id="2012-01-02">2</td>
 <td id="2012-01-03">3</td>
 <td id="2012-01-04">4</td>
 <td id="2012-01-05">5</td>
 <td id="2012-01-06">6</td>
 <td id="2012-01-07">7</td>
 </tr>
 <tr><!-- ... --></tr>
 <tr><!-- ... --></tr>
 <tr><!-- ... --></tr>
 <tr><!-- ... --></tr>
</table>

Our collection of appointments contains appointments on the 1st and 2nd of the month:

Writing Backbone
Applications

12

$(function() {
 var appointments = new Appointments();
 appointments.reset(
 [{startDate: "2011-12-31", /* ... */ },
 {startDate: "2012-01-01", /* ... */ },
 {startDate: "2012-01-02", /* ... */ },
 /* ... */
]
);
});

These appointments should render a title and possibly some controls on the corresponding
date in the calendar. To make this happen, we need Backbone.js views.

An individual view might look something like:

var AppointmentView = Backbone.View.extend({
 template: _.template(
 '' +
 ' {{title}}' +
 ' X' +
 ''
),
 initialize: function(options) {
 this.container = $('#' + this.model.get('startDate'));
 options.model.bind('change', this.render, this);
 },
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 this.container.append($(this.el));
 return this;
 }
});

That is fairly small, but there is also a fair bit going on in there. First is a template()
method that describes the DOM structure of the appointment as it will be inserted into the
calendar:

Writing Backbone
Applications

13

var AppointmentView = Backbone.View.extend({
 template: _.template(
 '' +
 ' {{title}}' +
 ' X' +
 ''
),
 //
});

The description will be a tooltip as the user hovers over the appointment. The title and a
"delete" icon are the elements that will actually be displayed 3.

In the initialize() method, which Backbone calls automatically if defined, we define
where in the calendar the appointment HTML will get attached (.i.e. the view’s container)
and we instruct the view to listen to the underlying model for changes:

var AppointmentView = Backbone.View.extend({
 //
 initialize: function(options) {
 this.container = $('#' + this.model.get('startDate'));
 options.model.bind('change', this.render, this);
 },
 //
});

Both the HTML and the model are following our ISO 8601 convention for dates. The
HTML page assigns the ISO 8601 date as the ID attribute for the corresponding table cell
in the calendar:

 <!-- ... -->
 <td id="2012-01-01">1</td>
 <!-- ... -->

To access that table cell with jQuery, we would use the ID selector convention of:
$('#2012-01-01').

The model has the ISO 8601 date stored in the startDate attribute:

3We are using mustache style templates here to aid in readability. See Chapter 5, View Templates with Underscore.js
for details.

Writing Backbone
Applications

14

 // ...
 {startDate: "2012-01-01", /* ... */ },
 // ...

To extract attributes from Backbone model objects, we need to use the get() method:
model.get('startDate').

Thus, in the View’s initialize() method, we can identify the appointment model’s
container with: $('#' + this.model.get('startDate')). Astute readers will note
that we have not explicitly assigned the model attribute in out view—even though we are
making extensive use of it. As we will see in Chapter 18, Object References in Backbone,
Backbone does this for us.

Last up in the view is the render() method, which actually builds the HTML for this
view:

var AppointmentView = Backbone.View.extend({
 // ...
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 this.container.append($(this.el));
 return this;
 }
});

Here, we make use of another Model method, toJSON(), to get all of the attributes from
the model (e.g. startDate, title, and description) as an object literal:

{
 'startDate': "2012-01-01",
 'title': "Resolve to Learn Backbone.js",
 'description': "Because it is awesome."
}

That object literal is then passed to the template that we defined earlier so that the
attributes of the object literal can be used to replace the variables of the same name in the
template.

Thus, this template:

Writing Backbone
Applications

15

 {{title}}
 X'

When combined our model’s JSON, becomes:

 Resolve to Learn Backbone.js
 X'

The rest of the render() method inserts this HTML into the View’s el, and the el into
the containing table cell:

var AppointmentView = Backbone.View.extend({
 // ...
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 this.container.append($(this.el));
 return this;
 }
});

Important

Backbone views automatically create an anonymous el to hold the HTML that it
needs. Normally the calling context will append that el into its own element. In the
case of our calendar, there is no calling context, so the Appointment view itself
assumes this responsibility. In reality this is a Backbone code smell. There should
be a Calendar view with this responsibility — that would probably be next on our
list of things to do with this application, but we leave it here as an exercise for the
reader.

We have our Appointment view defined, but it is still not being drawn on the calendar.
To actually get it added to the calendar, something needs to create the view objects.
Depending on the application, this can either be done in the Backbone application’s
constructor or in a Collection view.

The collection view is more proper:

Writing Backbone
Applications

16

var AppointmentCollectionView = Backbone.View.extend({
 render: function() {
 this.collection.each(function(appointment) {
 var view = new Appointment({model: appointment});
 view.render();
 });
 }
});

// In the application constructor:
var appointments = new Appointments();
appointments.reset(
 [{startDate: "2011-12-31", /* ... */ },
 {startDate: "2012-01-01", /* ... */ },
 {startDate: "2012-01-02", /* ... */ },
 /* ... */
]
);

var collection_view =
 new AppointmentCollectionView({collection: appointments});

collection_view.render();

Don’t worry if that is a bit much at this point. We discuss the collection view in much
more detail in Chapter 7, Collection View.

At this point, we have effectively replaced the following non-AJAX code from the
previous chapter with the Backbone equivalent:

function add_appointment(appointment) {
 var date = appointment.startDate,
 title = appointment.title,
 description = appointment.description;

 $('#' + date).append(
 '' +
 title +
 ''
);
}

Writing Backbone
Applications

17

We have a bit more code on our hands, but we have gained much: a persistent store object,
separation of concerns, and an idea of how to take the next steps. That last point should not
be overlooked. In our non-Backbone version of the application, we have no idea how we
might go about adding a delete widget to the appointment on the calendar.

With Backbone, we know that the responsibility for handing the delete click event lies
with the individual Appointment views. Backbone would have us do this via an events
property:

var AppointmentView = Backbone.View.extend({
 initialize: function(options) {
 this.container = $('#' + this.model.get('startDate'));
 options.model.bind('destroy', this.remove, this);
 },
 events: {
 'click .delete': 'handleDelete'
 },
 handleDelete: function() {
 this.model.destroy();
 return false;
 },

 //

 template: _.template(
 '' +
 ' {{title}}' +
 ' X' +
 ''
),

 //
});

With that, a click on our delete widget is handed off to the handleDelete() method,
which signals the model to destroy() itself. Once the model has successfully removed
itself from the server, it triggers a "destroy" event. In the view’s initialize method, we
bind "destroy" events to the built-in remove() method, which removes the view itself.

Writing Backbone
Applications

18

Tip

Why not just remove() the element directly in handleDelete()? We wait until
the model confirms that it has been removed from the persistence store because
something could go wrong. By relying on events in this manner, we can be sure
that things only disappear when they are supposed to and that errors can be handled
separately. Try doing that in our non-AJAX version of the application!

2.4. Additional Reading
This was by no means an exhaustive introduction to Backbone.js programming. If you are
still feeling a little lost, we highly recommend any of the following:

• The main Backbone site [http://documentcloud.github.com/backbone/]. The source code
itself is also worth reading—it is quite well written and nicely commented.

• Backbone Resources from Derick Bailey [http://backbonetraining.net/resources]. This
is a great resource for all things Backbone. Derick also produces a series of screencasts
(both paid and free) that are well worth watching.

• Peepcode screencasts [http://peepcode.com/products/backbone-js] the undisputed kings
of the screencast bring their considerable skill to bear on Backbone.js.

2.5. Conclusion
That concludes our whirlwind introduction to Backbone.js as well as the application that
will drive our discussion of much deeper topics in the reminder of the book. Even if this
was your first exposure to Backbone, you should have the beginnings of understanding as
to how Backbone applications are written. Even better, you should have an idea as to why
some things are done they way they are.

The rest of the book is dedicated to exploiting this structure so that we might realize some
pretty amazing benefits.

Let’s get started…

http://documentcloud.github.com/backbone/
http://documentcloud.github.com/backbone/
http://backbonetraining.net/resources
http://backbonetraining.net/resources
http://peepcode.com/products/backbone-js
http://peepcode.com/products/backbone-js

19

Chapter 3. Namespacing

3.1. The Problem
This recipe is entirely geared toward long term maintainability of Backbone applications.

As Backbone applications grow, they can quickly pollute the global browser namespace
with classes, instances and helper variables. In smaller implementations, this may not be
much of a concern. When applications grow (and shouldn’t they grow?), a poorly chosen
naming scheme can cause all manner of problems.

3.2. The Solution
Two different approaches have worked for us in the past.

3.2.1. Alternative #1: Global Object
Namespace

The first involves placing all Backbone class definitions inside of a global "namespace"
object:

var Calendar = {
 Models: {},
 Collections: {},
 Views: {}
};

Then, as you define each model, collection and view class (as well as any helper classes
that you might require), you can define them in this structure:

Namespacing

20

Calendar.Models.Appointment = Backbone.Model.extend({
 // ...
});

Calendar.Models.Holiday = Backbone.Model.extend({
 // ...
});

Calendar.Collections.Appointments = Backbone.Collection.extend({
 // ...
});

The principal advantage of this approach is that only one variable representing Backbone
models, views and collections makes its way into the global namespace: Calendar. All
other classes are defined inside this global object.

This is especially handy when concepts like "holidays" might have meaning outside of the
Backbone application. With this naming scheme, the Holiday model is tucked away inside
the Calendar.Models "namespace" where intent is clear.

Using this naming convention has the side-benefit of making class naming easier. If
you attempt to define things in the global namespace, it might make sense to name the
appointment model Appointment. But what, then, should you name the appointment
view?

Tacking on the word View to each seems, er… tacky. Models would be given first-
class citizen treatment (e.g. Appointment). Collections might get this as well (e.g.
Appointments). But views need the extra View? Ugh.

And what if some views do not conflict with models and collection names (e.g.
AddAppointment)? Do you append "View" to these in order to follow a convention? Do
you omit "View" on these special cases to aid clarity?

Following the global object namespace convention means not having to choose. You get
a clear convention that aids in maintainability with the added benefit of limiting risk of
conflicting class and variable names.

Namespacing

21

3.2.2. Alternative #2: Javascript Function
Constructor

The global object namespace is a simple approach. It also lends itself well to very large
applications with numerous classes that you might prefer to keep in separate files. For
more self-contained applications, a full blown Javascript object makes more sense.

This approach involves using a function constructor 1. With a function constructor in
Javascript, all manner of objects, functions, data and even classes can be initialized inside
the function. Very little need be exposed to the outside world.

In the following, methods and data are defined inside the public and private object
literals. With that out of the way, object initialization can be performed. Lastly, public
attributes—and only the public attributes—of the resulting object are returned:

var Calendar = function(options) {
 var private = { /* private stuff here */ },
 public = { /* stuff for the outside */ };

 // Define methods and properties, adding to public as needed
 // Perform any object initialization

 return public;
}

var calendar = new Calendar();

In the global object namespace approach, we would still need to assign collection and view
variables in the global namespace:

var appointments = new Calendar.Collections.Appointments;

With a function constructor, this instance creation can take place inside of the function
where there is no danger of conflicting with other variables.

Applying this approach to a Backbone application, we have something along the lines of:

1This approach relies on Javascript closures. If this is a foreign concept, check out "Inheritance: Functional" in
Douglas Crockford’s "Javascript: The Good Parts"

Namespacing

22

var Cal = function() {
 var Models = { /* model classes */ };

 var Collections = { /* collection classes */ };

 var Views = { /* view classes */ };

 // Initialize the app
 var appointments = new Collections.Appointments;

 new Views.Application({collection: appointments});

 return {
 Models: Models,
 Collections: Collections,
 Views: Views,
 appointments: appointments
 };
};

By defining Models, Collections, and Views object literal variables inside of the
constructor, we have an easy time referencing things across—or even outside—concerns.
For example, when initializing the Appointments collection, we can refer to new
Collections.Appointment. With the global namespace approach, we always have to
use the global namespace new Calendar.Collections.appointment. Dropping a single
word does wonders for code readability and long term maintainability.

By returning each of these classes from the function constructor with a key of the same
name, it means that the outside can get access to objects or classes with the exact same
naming scheme:

Namespacing

23

var Cal = function() {
 // ...

 var appointments = new Collections.Appointments;

 return {
 Models: Models,
 Collections: Collections,
 Views: Views,
 appointments: appointments
 };
};

var calendar = new Calendar();

// The appointments collection class
var AppointmentsCollection = calendar.Collections.Appointments;

// Actual appointments from the initialized collection object
var appointments = calendar.appointments;

Encapsulating concepts inside functions is so useful, in fact, that it can be used inside the
function constructor. Instead of assigning the Models, Collections, and Views variables
directly to object literals containing class definitions, we find it best to assign them to the
return value of anonymous functions. These anonymous functions, when invoked with the
() operator, return the same object literals—but with only those attributes that we want
exposed to the outside world.

For example, instead of defining the Models variable directly:

var Calendar = function() {
 var Models = {Appointment: Backbone.Model.extend({...});};

 // ...
};

We can define the Models inside an anonymous function:

Namespacing

24

var Calendar = function() {
 var Models = (function() {
 var Appointment = Backbone.Model.extend({...});

 return {Appointment: Appointment};
 })();

 // ...
};

In this case, it buys us nothing. The end result of both approaches is a Models object
variable with an Appointments key. This Appointments key references the Appointment
class. This allows us to reference the class as Models.Appointment from elsewhere inside
the function constructor (and ultimately as Calendar.Models.Appointment outside of the
function constructor).

Where this approach yields benefit is when you have classes that are only needed by other
classes, but not the outside world. For instance, the Appointment model may need to
create instances of appointment attendees:

var Calendar = function() {
 var Models = (function() {
 var Appointment = Backbone.Model.extend({
 // ...
 attendees: function() {
 _.(this.get("emails")).map(function(email) {
 return new Attendee(email);
 });
 }
 });

 var Attendee = Backbone.Model.extend({ /* ... */ });

 // Only return Appointment
 return {Appointment: Appointment};
 })();

 // ...
};

Namespacing

25

This is especially powerful with View classes. Generally, only a handful of View classes
need to be seen outside of a Backbone application. The remaining only pop-up on demand
from the main view.

In the following, only the Application view needs to be accessed from outside. Once it is
initialized, instances of the remaining classes are used on demand from the Application
object or from each other:

var Cal = function() {
 var Models = (function() { /* ... */ })();

 var Collections = (function() { /* ... */ })();

 var Views = (function() {
 var Appointment = Backbone.View.extend({...});
 var AppointmentEdit = Backbone.View.extend({...});
 var AppointmentAdd = new (Backbone.View.extend({...}));
 var Day = Backbone.View.extend({...});
 var Application = Backbone.View.extend({...});

 return {Application: Application};
 })();

 // Initialize the app
 var appointments = new Collections.Appointments;

 new Views.Application({collection: appointments});

 return {
 Models: Models,
 Collections: Collections,
 Views: Views,
 appointments: appointments
 };
};

A second advantage of this approach is that, within the constructor, it is possible
to reference cross concern classes with less ceremony. When the collection needs
to reference the model, it can do so as Models.Appointment instead of the full
Calendar.Models.Appointment that is required in strategy #1:

Namespacing

26

var Collections = (function() {
 var Appointments = Backbone.Collection.extend({
 model: Models.Appointment,
 parse: function(response) {
 return _(response.rows).map(function(row) { return row.doc ;});
 }
 });

 return {Appointments: Appointments};
})();

This simple, and seemingly small, change will pay significant dividends over the lifetime
of your Backbone applications.

This advantage is even more pronounced when referencing classes within the same
concern. For example, if clicking the day view spawns the add-appointment view, this can
be done with a simple reference to AppointmentAdd instead of needing to type (and read)
Calendar.Views.AppointmentAdd:

var Day = Backbone.View.extend({
 events : {
 'click': 'addClick'
 },
 addClick: function(e) {
 console.log("addClick");

 AppointmentAdd.reset({startDate: this.el.id});
 }
});

The last advantage of this approach is the ability to define a very specific API for your
Backbone application. Only those properties and methods required by other objects or
even other Backbone applications are exposed.

A potential disadvantage of this approach is that individual model, view and collection
classes cannot be in separate files and included directly in the page:

Namespacing

27

<script src="/javascript/backbone/calendar/models/appointment.js">
<script src="/javascript/backbone/calendar/collections/appointment.js">
<script src="/javascript/backbone/calendar/views/appointment.js">
<script src="/javascript/backbone/calendar/views/appointment_edit.js">
<script src="/javascript/backbone/calendar/views/appointment_add.js">
<script src="/javascript/backbone/calendar/views/day.js">
<script src="/javascript/backbone/calendar/views/application.js">

In the end, the choice is yours. Stick with the simple, global object that allows separate
files for each class or go for the self-contained goodness of javascript objects. One is sure
to meet your needs.

3.3. Conclusion
Namespacing is one of those concepts that you generally do not think about until it is too
late. Even if you are fairly certain that your Backbone application is going to remain small,
it is best to initialize and build models, views and controllers inside a common namespace
object. This eliminates questions about possible naming conventions and reduces the
footprint on the global namespace.

But, if your application is large or has the potential to grow large, it is best to put
Javascript’s function constructors to good use. These can create a whole application
constructor that only exposes those pieces that you definitely want the rest of the page to
see. Better still, it gives the individual components of your application more direct access
to each other.

28

Chapter 4. Organizing with Require.js
Unlike most languages, Javascript lacks a built-in mechanism for loading libraries. There
are a number of competing solutions, but require.js offers perhaps the most complete.

4.1. The Problem
As we just saw in Chapter 3, Namespacing, organizing Backbone code is a significant
challenge to the Backbone developer. As difficult as it may be to keep code well organized
within a namespace, it may be even more of a challenge to keep code organized on the
file system. The require.js library offers just such a solution—doing so by exposing two
keywords (require and define) that give Javascript a very familiar feel.

4.2. The Solution
Consider again our poor Calendar application. To draw the month view of the calendar
itself, we might use a series of Backbone views that start at the top-level CalendarMonth
and work all the way down to CalendarMonthDay. In our namespacing solution, this
would look something like:

window.Cal = function(root_el) {
 var Models = (function() { /* ... */ })();
 var Collections = (function() { /* ... */ })();
 var Appointments = Backbone.Collection.extend({ /* ... */ })();
 var Views = (function() {
 var CalendarMonth = Backbone.View.extend({ /* ... */ });
 var CalendarMonthHeader = Backbone.View.extend({ /* ... */ });
 var CalendarMonthBody = Backbone.View.extend({ /* ... */ });
 var CalendarMonthWeek = Backbone.View.extend({ /* ... */ });
 var CalendarMonthDay = Backbone.View.extend({ /* ... */ });
 // ...
 })();

 // Routers, helpers, initialization...
};

Organizing with Require.js

29

In a small Backbone application, that is not too bad. There are some definite advantages to
having everything in a single editor buffer—especially if everything is fairly small.

But, if the application grows significantly, this can quickly become unwieldy. Searching
through a single file for the Appointment model can easily become a tedium of by-passing
places in which the model is instantiated rather than defined. Or, worse still, where the
Appointment view is defined instead of the model.

In the past, client-side Javascript developers have been reduced to a series of <script>
tags, each of which populate a global namespace:

<script>
var Calendar = {
 Models: {},
 Collections: {},
 Views: {}
};
</script>
<script src="Calendar/Views/CalendarMonth.js" />
<script src="Calendar/Views/CalendarMonthHeader.js" />
<script src="Calendar/Views/CalendarMonthBody.js" />
<script src="Calendar/Views/CalendarMonthWeek.js" />
<script src="Calendar/Views/CalendarMonthDay.js" />
<!-- ... -->

Without help, such a solution is very much at the mercy of networking
woes. If CalendarMonth creates an instance of CalendarMonthHeader, but
CalendarMonthHeader arrives in the browser later than the requiring context, trouble
can ensue. Regardless of load order, require.js ensures that no code is evaluated until all
requirements have finished loading.

If there is significant network latency, then the round-trip time for the browser to fetch
each of these files can significantly degrade application startup. Network issues can be
mitigated by packaging all Javascript files into a single bundle. Although that introduces
some complexity in the deployment process, it is a fairly well-established practice—with
or without require.js.

Another, more subtle problem with this approach is that it encourages inadvertent coupling
between the classes. Seemingly innocent references to higher order objects from a lower
order object can quickly grow out of hand (see Chapter 18, Object References in Backbone

Organizing with Require.js

30

for examples). With require.js (and similar mechanisms in server-side languages),
dependencies must be explicitly declared. Coupling concerns become that much more
readily identified and eliminated.

Let’s see how a require.js Backbone application looks in HTML:

<script data-main="scripts/main"
 src="scripts/require.js"></script>

That’s it! All of the <script> tags from our traditional approach have been replaced with
a single <script> tag. The src of that script tag is the require.js library itself.

How, then, does the application code get loaded? The answer is the data-main HTML5
attribute, which points to the "main" entry point of the application. The ".js" suffix is
optional, so, in our case, we are loading from the public/scripts/main.js file.

The entry point for a require.js application is responsible for any configuration that needs
to be done as well as initializing objects. For our calendar application, it might look
something like:

require.config({
 paths: {
 'jquery': 'jquery.min',
 'jquery-ui': 'jquery-ui.min'
 }
});

require(['Calendar'], function(Calendar){
 var calendar = new Calendar($('#calendar'));
});

In the configuration section, we are telling require.js where to find libraries that are
referenced. For the most part, require.js can guess the library needed. In this case,
we tell require.js that, when we require('jquery'), that it should use the minified
jquery.min.js (again the ".js" suffix is not needed). This can be especially handy
if libraries include version numbers or other information in the filename (e.g. jquery-
ui-1.8.16.custom.min.js). There are many config options 1, but paths suffices 80% of the
time.

1http://requirejs.org/docs/api.html#config

http://requirejs.org/docs/api.html#config

Organizing with Require.js

31

As for loading and initializing our Backbone application, it requires three lines of
Javascript:

require(['Calendar'], function(Calendar){
 new Calendar($('#calendar'));
});

The first argument to require() is a list of dependent libraries. In this case, we only want
public/scripts/Calendar.js. Surprisingly, we do not need to pull in jQuery, Backbone
or anything else—those dependencies are resolved lower in the Backbone application.
The calendar class is supplied to the anonymous function, to which we bind the Calendar
variable. At this point, all that is left is to instantiate the application.

For experienced Javascript coders—especially front end developers—this is pretty
amazing. It is almost as if our beloved Javascript has become a "real" server-side language
like Ruby, Python or Perl—complete with require / import statements. This, of course,
is the entire point of require.js. It allows us to define and require modules, classes, JSON,
and even functions.

To see how we might define a require.js module, let’s have a look at the Calendar.js
class that is being required above:

// public/scripts/Calendar.js
define(function(require) {
 var $ = require('jquery')
 , _ = require('underscore')
 , Backbone = require('backbone')
 , Router = require('Calendar/Router')
 , Appointments = require('Calendar/Collections.Appointments')
 , Application = require('Calendar/Views.Application')
 , to_iso8601 = require('Calendar/Helpers.to_iso8601');

 return function(root_el) {
 // Instantiate collections, views, routes here
 };
});

Require.js modules are built with the define() method. The define() method is roughly
analogous to the module keyword in other languages—it encapsulates a code module. By
convention, the first thing done inside a require.js module is requiring other libraries. This
is where jQuery and Backbone dependencies finally start to be seen.

Organizing with Require.js

32

Important

At the time of this writing, this will only work with a minor fork of Backbone
maintained by James Burke 2, the require.js maintainer. Jeremy Ashkenas has
publicly stated his intention to merge some form of this into Backbone by the next
release, so we are not going too far out on a limb here.

Also of note, is the naming convention that we use for the individual Backbone classes on
the server. Instead of grouping them in Models, Views and Collections sub-directories,
we put everything inside the Calendar top-level application directory. In there, we embed
the type of class into the filename. This makes it easy to tell the difference between
Models.Appointment.js and Views.Appointment.js in our editors (otherwise we
would just have two files named Appointment.js).

Require.js modules must return a value—this is what gets assigned by the require()
function. In our Calendar class, we use a function constructor to instantiate three things: a
Backbone collection, a top-level view and the router. Then, we return an object for the new
Calendar($('#calendar')) call:

define(function(require) {
 // require things

 return function(root_el) {
 var appointments = new Appointments()
 , application = new Application({
 collection: appointments,
 el: root_el
 });

 new Router({application: application});
 Backbone.history.start();

 return {
 application: application,
 appointments: appointments
 };
 };
});

2https://github.com/jrburke/backbone/tree/optamd3

https://github.com/jrburke/backbone/tree/optamd3

Organizing with Require.js

33

Taking a quick peek at a how a Backbone view is defined, we again see the define()
statement at the top, followed by the various require() statements. Last up comes the
return value, an anonymous view class definition:

// scripts/Calendar/Views.Application.js
define(function(require) {
 var Backbone = require('backbone')
 , $ = require('jquery')
 , _ = require('underscore')
 , TitleView = require('Calendar/Views.TitleView')
 , CalendarMonth = require('Calendar/Views.CalendarMonth')
 , Appointment = require('Calendar/Views.Appointment');

 return Backbone.View.extend({
 // ...
 });
});

Tip

Things like assigning the jQuery function to the dollar sign are much more explicit
in require.js: $ = require('jquery').

At first, returning an anonymous view class might seem a little foreign, but this allows us
the flexibility of assigning the class name however we see fit in the requiring context:

var Application = require('Calendar/Views.Application');

// or

var Calendar = {
 Views: {
 Application: require('Calendar/Views.Application');
 }
}

Note

Require.js is very good about loading modules only once regardless of how many
times in the dependency tree a particular module is require()'d. Nearly all of
your Backbone classes will need to do something along the lines of Backbone =

Organizing with Require.js

34

require('backbone'). Mercifully, require.js spares the user the overhead of re-
requesting that same library repeatedly.

At the risk of being redundant, a model class might be defined as:

// scripts/Calendar/Models.Appointment.js
define(function(require) {
 var Backbone = require('backbone')
 , _ = require('underscore');

 return Backbone.Model.extend({
 // Normal model attributes
 });
});

The collection that uses this model could then be defined as:

// scripts/Calendar/Collections.Appointments.js
define(function(require) {
 var Backbone = require('backbone')
 , Appointment = require('Calendar/Models.Appointment');

 return Backbone.Collection.extend({
 model: Appointment,
 url: '/appointments',
 // Other collection attributes here
 });
});

With require.js, the list of individual library files needed to run a Backbone application
is no longer the responsibility of the web page that happens to include the application.
Now, it is the dependent libraries who are tasked with this job—a much saner, more
maintainable solution.

4.2.1. Requiring Other Things
Require.js is a browser hack rather than a language hack. That is, once it analyzes
dependencies, it adds new libraries by appending new <script> tags to the body of
the hosting web page. Since it is already appending things to the page, there is nothing
preventing require.js from appending other things—like CSS and HTML templates.

Organizing with Require.js

35

HTML templates, in particular, can further aid in the maintainability of Backbone
applications. Consider, for instance, an appointment template (using the mustache-style
from Chapter 5, View Templates with Underscore.js) that displays the title and a delete
widget:

// public/javascripts/calendar/Views.Appointment.html

 {{title}}
 X

There are some advantages to keeping such HTML templates in our views, especially if
they are small. Still, there are times when the views themselves get long or the syntax
highlighting in our editors would be handy. In such cases, we can install the require.js text
plugin 3. The defined sections of our views can then require the HTML template:

define(function(require) {
 var Backbone = require('backbone')
 , _ = require('underscore')
 , html_template = require('text!calendar/views/Appointment.html')
 , template = _.template(html_template)
 // ...

 return Backbone.View.extend({
 template: template,
 // ...
 });
});

With that, we are now maintaining templates separately from the views without any
significant changes to the overall structure of the code.

4.2.2. Optimization / Asset Packaging

In the end, even a very small Backbone application organized with require.js is going to
be comprised of a large number of individual files. By way of example, a limited calendar
application might look like:

3http://requirejs.org/docs/download.html#text

http://requirejs.org/docs/download.html#text

Organizing with Require.js

36

scripts
+-- backbone.js
+-- Calendar
| +-- Collections.Appointments.js
| +-- Helpers.template.js
| +-- Helpers.to_iso8601.js
| +-- Models.Appointment.js
| +-- Router.js
| +-- Views.Application.js
| +-- Views.AppointmentAdd.js
| +-- Views.AppointmentEdit.js
| +-- Views.Appointment.js
| +-- Views.Appointment.html
| +-- Views.CalendarMonthBody.js
| +-- Views.CalendarMonthDay.js
| +-- Views.CalendarMonthHeader.js
| +-- Views.CalendarMonth.js
| +-- Views.CalendarMonthWeek.js
| +-- Views.CalendarNavigation.js
| +-- Views.TitleView.js
+-- Calendar.js
+-- jquery.min.js
+-- jquery-ui.min.js
+-- main.js
+-- require.js
+-- underscore.js

That is 24 round trips (request / response) that the browser would need to make before it is
even capable of booting the application. Even if the client is connected to the server over a
fast, low latency connection, there is way too much overhead in that setup 4. To get around
that, of course, modern websites use asset packaging and CDNs.

Most asset packages are ignorant of require.js so we might be given to despair. Happily,
require.js includes its own asset packager, r.js. There are at least two ways to install r.js
5. Which installation method is best depends on individual development environments and
preferences.

4Unless you are using something like SPDY. By the way, you should totally buy Chris’s "The SPDY Book" if you
have not already :D
5Download and installation instructions are available from the require.js site: http://requirejs.org/docs/
optimization.html

http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html

Organizing with Require.js

37

To run the optimization tool, it is easiest to create an app.build.js file in your
application’s root directory. This file contains a number of options, some of which will be
nearly duplicate of the require.config options in the data-main file:

({
 // Where HTML and JS is stored:
 appDir: "public",
 // Sub-directory of appDir containing JS:
 baseUrl: "scripts",
 // Where to build the optimized project:
 dir: "public.optimized",
 // Modules to be optimized:
 modules: [
 {
 name: "main"
 }
],
 // Resolve any 'jquery' dependencies to the versioned jquery file:
 paths: {
 'jquery': 'jquery-1.7.1'
 }
})

The paths option has exactly the same meaning in the build configuration that is has in
data-main—it tells require.js to map named dependencies to non-inferable filenames.
Here, we are telling require.js to require references to jquery from the jquery-1.7.1.js
resource. At some point, the optimization tool may be able to extract this information
directly from data-main. At the time of this writing, it is separate to allow maximum
flexibility when optimizing.

Most of the other configuration options are self-explanatory. To slurp in the entire
dependency tree, all we need to do is specify the main.js module via the modules
attribute—r.js will take care of the rest for us.

With that, it is a simple matter of building the optimized version of our public directory:

Organizing with Require.js

38

$ r.js -o app.build.js

Tracing dependencies for: main

 scripts/main.js

 scripts/jquery-1.7.1.js
 scripts/underscore.js
 scripts/backbone.js
 scripts/Calendar/Views.Paginator.js
 ...
 scripts/Calendar.js
 scripts/main.js

That’s it! The optimized version of the site is now available in the directory specified by
dir (we used public.optimized). We can then point our web server at that directory and
serve up super fast, packaged code.

4.3. Conclusion
Web developers have lived with the lack of a mechanism to require Javascript files for so
long that we are almost numb to the pain. We would belittle a server-side programming
language that lacked something so basic—how can we possibly produce quality code
without a reliable way to organize it? We could almost excuse the lack of this ability in the
past with Javascript—after all it is only recently that we have witnessed the explosion of
client-side coding.

But in 2012 and beyond, it behooves us to use a module loader like require.js. It makes our
code much more readable, and easier to maintain. It’s almost like programming in a real
language.

39

Chapter 5. View Templates with
Underscore.js

5.1. The Problem
It will happen.

No matter how hard you try to keep your Backbone.js views free from large amounts of
HTML, there really are times when more HTML does solve the problem (unlike XML and
guns).

But how do you solve the immediate problem without sacrificing maintainability and
readability in the future? Discretionary use of underscore.js templates will go a long way.

5.2. The Solution
Let’s consider a calendar navigation view. If the user is currently viewing appointments
for January 2012, the view would need to render HTML along the lines of:

<div class="previous">
 previous
</div>
<div class="next">
 next
</div>

One way to accomplish this might be concatenating HTML and date strings:

View Templates
with Underscore.js

40

/* This is not a good idea */
var CalendarNavigation = Backbone.View.extend({
 render: function() {
 var date = this.collection.getDate(),
 previous_month = Helpers.previousMonth(date),
 next_month = Helpers.nextMonth(date);

 var html =
 '<div class="previous">' +
 'previous' +
 '</div>' +
 '<div class="next">' +
 'next' +
 '</div>';

 $(this.el).html(html);

 return this;
 }
});

This is a poor long term solution because, as short as it is, the render() method is doing
way too much. It calculates the next/previous months, it builds HTML, and it inserts that
HTML into the DOM.

It also fails the "at a glance" test because it is hard to pick out the variables from the noise
of the HTML. Since the variables are the most important thing going on here, it should be
immediately obvious how they are used. Besides, it is a pain typing all of those single and
double quotes.

Tip

If code fails the "at a glance" test, it lacks long term maintainability. That is, if it is
hard to pick out the important elements of a particular segment of code, then it will
be that much harder to understand intent when trying to track down a bug or add a
feature six months later.

A better solution is to make use of the templating that is built into underscore.js (upon
which Backbone is built).

Passing a template string to the _.template() method returns a template function:

View Templates
with Underscore.js

41

var template_fn = _.template(
 '<div class="previous">' +
 'previous' +
 '</div>' +
 '<div class="next">' +
 'next' +
 '</div>'
);

The template function will accept a single argument—an object literal that contains
the values to be inserted into the template. In this case, we want to insert values for
previous_date and next_date. If the current month is January 2012, we would want to
set these values to December 2011 and February 2012 respectively:

template_fn({
 previous_date: "2011-12",
 next_date: "2012-02"
))

The result of that template function call would then be:

<div class="previous">
 previous
</div>
<div class="next">
 next
</div>

In Backbone applications, this is typically implemented by assigning the template function
to an attribute on the View class. Since this attribute points to a function, we can call it as
if it were a method on the object.

Warning

Template methods are not real methods—the special this variable will not refer to
the current object. Rather it would refer to the template function from underscore.
For the most part, this should not matter—you should only pass variables into a
template, not assign them from attributes of the object. But, if you really, really
need to, the judicious use of an _.bindAll in the object’s initialize should do the
trick.

View Templates
with Underscore.js

42

To illustrate, let’s revisit the CalendarNavigation view. We assign the template function
to the template attribute of the view class. The render method can then call the template
function as this.template():

var CalendarNavigation = Backbone.View.extend({
 template: _.template(
 '<div class="previous">' +
 'previous' +
 '</div>' +
 '<div class="next">' +
 'next' +
 '</div>'
),
 render: function() {
 var date = this.collection.getDate();
 $(this.el).html(this.template({
 previous_date: Helpers.previousMonth(date),
 next_date: Helpers.nextMonth(date)
 }));

 return this;
 }
});

Best of all, the template method has a single responsibility: building the HTML structure.
Similarly, the render() method has a single responsibility as well: inserting the result of
the template function call into the DOM.

Both methods are small and focused, which means that there are fewer chances for bugs
to occur. If bugs do occur, then it will much easier to identify the culprit. Splitting things
up like this keeps things so small, in fact, that including the HTML directly in the template
method definition does not feel onerous.

Tip

The underscore template() method can take either one or two arguments. The
first is the template string, the second is the object literal that is interpolated into
the template. If you only pass the template string argument, then template()
returns a function that accepts one argument—the object literal.

View Templates
with Underscore.js

43

5.2.1. Avoid Script Tag Templates
Many tutorials and documentation give examples of script tag underscore templates such
as:

<script type="text/template" id="calendar-appointment-template">

 {{title}}
 X

</script>

There are some definite advantages to this kind of approach. By using a <script> tag, the
intent is quite clear—this will be used to support code. A type of text/template is not
recognized by any browser vendor as a programming language, but it is readily understood
by any developer reading the code.

Using such templates is similarly easy. Simply reference the id attribute of the script tag
and you have access to the template via a jQuery html() call:

var Appointment = Backbone.View.extend({
 template: _.template($('#calendar-appointment-template').html()),
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 }
});

From there, it is just as easy to apply the script template as it was to apply the inline
template.

Easy. Easy. Easy. So what is the problem?

In two words: code organization.

By its very nature, the <script> tag is HTML that needs to reside in the HTML
document. Most of your Backbone code is better organized in .js files loaded elsewhere.

At best, you can include script templates immediately after the script tag defining the
Backbone view:

View Templates
with Underscore.js

44

<script type="application/javascript">
var Appointment = Backbone.View.extend({
 template: _.template($('#calendar-appointment-template').html()),
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 }
});
</script>

<script type="text/template" id="calendar-appointment-template">

 {{title}}
 X

</script>

But that is terrible! As you scan through your code, you will be constantly be interrupted
by HTML snippets—both in templates and in your code.

It is best to keep the number of script templates to a minimum by inlining underscore
templates:

var Appointment = Backbone.View.extend({
 template: _.template(
 '' +
 '{{title}}' +
 'X' +
 ''
),
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 }
});

Since the template in this case is small, we are not sacrificing much in the way of
readability by including it directly in the view class. Not only do we have the template
available without jarring <script> tags getting in the way, but no searching is required to
find the template. The template is right in the Backbone view itself.

View Templates
with Underscore.js

45

Tip

Keep the number of script templates to an absolute minimum. Sometimes they are
a necessary evil, but regard them as a code smell. Your code will thank you. Your
future self will thank you.

If unsure, look for ways to break large templates into smaller views.

5.2.2. ERB Sucks {{ Use Mustache }}
The default variable / code handling in Backbone.js is intended to make life easy for Ruby
programmers. Ruby programmers are a bunch of whiny, elitist hipsters whose opinion
should not influence you (much) 1. Especially since they inflicted ERB on the world. ERB,
or embedded ruby allows developers to dynamically insert variables (or even code) into
templates.

The navigation template from earlier in this recipe can be written with ERB as:

<div class="previous">
 <a href="#month/<%= previous_date %>">previous
</div>
<div class="next">
 <a href="#month/<%= next_date %>">next
</div>

Do you see it in there? Of course you don’t. ERB lacks any semblance of readability when
used in HTML since it is delimited with the same less-than and greater-than symbols that
HTML uses.

Upon closer inspection of the above, you might notice <%= previous_date %>. This is
how ERB templates signal that the previous_date variable needs to be inserted into the
template. "Inserting into" is also known as interpolating.

Happily, Underscore exposes a mechanism for changing from ERB to a saner delimiter.
We prefer the mustache 2 format of double curly braces, which is much easier to pick out
when scanning the template:

1we are both rubyists by profession
2http://mustache.github.com/

http://mustache.github.com/

View Templates
with Underscore.js

46

<div class="previous">
 previous
</div>
<div class="next">
 next
</div>

Less-than, greater-than symbols just blend into the noise of the HTML. There are no
common use-cases for double curly braces so they naturally stand out when skimming the
template. This readily identifiable aspect of mustache makes it ideal for use in Backbone
applications.

To achieve mustache interpolation, change the value of _.templateSettings:

_.templateSettings = {
 interpolate : /\{\{(.+?)\}\}/g
};

Tip

Ah regular expressions. But as regular expressions go, our mustache interpolation
regular expression is not that bad:

/\{\{(.+?)\}\}/g

Obviously, it matches double curly braces before and after (.+?). The parentheses
around that indicates that everything inside will be fed back to underscore to
be replaced with the corresponding variable name. Of the remaining regular
expression, .+?, the period matches any character, the plus matches one or more
(of any character) and the question mark makes the expression "non-greedy".

Non-greedy regular expressions stop matching sooner rather than later. A greedy
version of our regular expression would match this entire string:

{{ one }} two three four {{ five }}

In other words, it starts matching on the two curly braces at the beginning of the
line and does not stop until it reaches the end of the line (after "five"). By making
the regular expression non-greedy, the matching stops as soon as the text after the
regular express (in this case, \}\}) is reached.

View Templates
with Underscore.js

47

Thus we pull out two variables to be interpolated: one and five.

5.2.3. Avoid Evaluation
By default, underscore templates are not limited to interpolating values into templates.
They can also evaluate Javascript. Instead of using the <%= ... %> delimiter, evaluation
in underscore templates takes place inside <% ... %> (without the equals sign).

By way of example, building a month view for a calendar might look something like:

/* Not a good idea */
<% _([0,1,2,3,4,5]).each(function(i) { %>
<tr class="week<%= i %>">
 <td class="sunday"></td>
 <td class="monday"></td>
 <td class="tuesday"></td>
 <td class="wednesday"></td>
 <td class="thursday"></td>
 <td class="friday"></td>
 <td class="saturday"></td>
</tr>
<% }); %>

This template features both interpolation (the week number in the class of the <tr> tag)
and evaluation (the anonymous function called for each week).

It is incredibly awkward to open the block of our function only to immediately close the
ERB tag. Even worse, the last line of this template — "<% }); %>" — looks as though a
cat was loosed on the keyboard of an unsuspecting developer.

Evaluating code in a template is almost always a code smell. Code evaluation is more
often than not a separate Backbone view trying to escape. In this Month view example, it is
more proper to create a Week view with the <tr> tag. This Week view, in turn, would then
have 7 Day views that will hold the <td> elements.

We take this advice so seriously that we normally do not define an evaluate template
setting:

_.templateSettings = {
 interpolate : /\{\{(.+?)\}\}/g
};

View Templates
with Underscore.js

48

With this setting, it is not possible to evaluate code in our templates. If ever we are
tempted by code evaluation in a template, we would be forced to ask ourselves very
seriously if we really need it. And we never do 3.

5.3. Conclusion
We use underscore templating almost without thinking in the remainder of the recipes.
Yet, it is well worth taking a step back to consider how we really want to use it and why.

To promote code readability, and hence maintainability, we will always use the mustache-
style interpolation syntax. Along those same lines, we will never use evaluatable templates
in these recipes. Views should be smart, templates dumb.

3Well, almost never.

49

Chapter 6. Instantiated View

6.1. Introduction
The Instantiated View pattern is a simple pattern that changes the way a view is
instantiated when it only needs one instantiation throughout the entire application. This
pattern is really more of a nifty trick, however we use it so frequently throughout the book
that it needed its own chapter.

6.2. The Problem
In web applications there are often objects in the user interface that only exist once. For
example, a navigation bar at the top of the page, or a search box, or information about
the user that is currently logged in. When we have these objects in a normal program we
would use a global variable, or more eloquently a singleton pattern. A singleton is a nice
way of auto-instantiating an object on demand and maintaining a single instance under
what is more or less a global variable.

A global variable is a much simpler way of accomplishing this task, but is generally
frowned upon because it pollutes the global scope of the program. However, in a web
application we are making active use of proper namespacing, and can therefore get
away with simply making a global variable instead of bothering to make a singleton.
Furthermore, jQuery makes it very easy to automatically instantiate an instance on the boot
of our application.

In HTML and Javascript, there is already the notion of a global identifier in the DOM,
`id`s. A div with a global id looks like:

<div id="list">I am a list. Because my id is set there should only be one of me on the page.</div>

In Backbone, we often go about defining our views then instantiating them, like this:

Instantiated View

50

MyApplication.Views.List = Backbone.View.extend({/* etc */});
// instantiation
$(function() {
 MyApplication.ListView = new MyApplication.Views.List({
 el: $('#list')
 });
})

Notice that we’re passing the element in as a parameter to the view. This decouples the
view from its actual location from the DOM, and allows us to change that DOM id without
having to update the view itself, just the instantiation of the app.

There is nothing functionally wrong with this code, it will behave as intended. The
main issue here is the redundancy and ambiguity of the variable names. It is up to the
programmer to remember that MyApplication.Views.List is the class definition of
a list that is only used once in the application and should not be instantiated, and that
MyApplication.ListView is our reference to the object that we should use in the
application.

We can make this code clearer, cleaner, shorter, and less error prone with a small change
to our view definition.

6.3. The Solution
The fix is to assign an instantiation of an anonymous class to MyApplication.ListView:

$(function() {
 MyApplication.ListView = new (Backbone.View.extend({
 initialize: function() {
 _.bindAll(this, 'render');
 },
 render: function() {
 $(this.el).html("I am a list");
 return this;
 }
 }))({el: $('#list')}).render()
});

In this approach, we are doing the typical extension of a top-level Backbone class with
custom attributes and methods. The difference, however, is that we do not assign the result

Instantiated View

51

to a class name as we did earlier. Instead, we immediately create a new instance of this
anonymous class. Lastly, MyApplication.ListView is assigned to the resulting object.

This lets us make one version of the view without leaving an enticing (or confusing) class
around that could be instantiated again. It also saves us a few lines of typing and reduces
the number of variables in our namespace. It also lets us avoid confusing nomenclature
like MyApplication.Views.List and MyApplication.ListView. Which one is the
instantiated version and which one is the class that we’re not supposed to use?

6.4. Conclusion
The end result is that there is no way to instantiate a new instance of the class 1. A good
pattern not only let’s you do something great, it also prevents you from doing something
bad. The Instantiated View prevents you, or someone else, from accidentally instantiating
a view that binds to what should be a unique DOM element. Just as important, the intent of
the object is much clearer.

1This is Javascript, so it is possible to clone the object or add it to a prototype chain. But you, or other developers,
would have to work hard to subvert the intent.

52

Chapter 7. Collection View

7.1. Introduction
The Collection View is a pattern that describes how to render views within views,
specifically with a Collection holding many Models which is a common occurrence in a
Backbone application. However, this pattern can easily be applied to any situation where
you have a view that needs to render a dynamic number of sub-views.

7.2. The Problem
In server-side applications, it is common to see routes that represent many items of the
same type. For example, the /appointments route might display HTML for all of the
appointments in the system.

Typically, this server-side code gathers up all appointments via a database query. It then
iterates over each record, rendering them as HTML in a template. This is all well and good
when the following conditions are true:

1. The server-side template library can handle iteration (or arbitrary code)

2. The generated page is not interactive

Unfortunately, neither of these conditions hold for a modern client-side web application.
Additionally, we encounter other obstacles:

1. Maintaining client-side templates quickly grows disorganized and confusing when they
are filled with logic and iteration

2. A lot of interactive code is concentrated into a few "master" views instead of spread
throughout the models

The first point is immediately apparent for anyone who has worked on a large client-side
application (otherwise, take our word for it!). The second point is more subtle and will
creep into your application over time.

Collection View

53

Consider our appointments application, which might consist of:

• Models.Appointments

• Collections.Appointments

• Views.Appointments

• Templates.Appointments

Think about what Templates.Appointments would look like. One of the first lines will
be the beginning of an iteration over individual appointments. The majority of this view
will be concerned with rendering an individual appointment. This should immediately
be an indicator that Templates.Appointments is not doing what it was designed to do. A
template for rendering multiple appointments should only be concerned with concepts like
lists and ordering, not with the process of rendering individual items.

Additionally, if we have a master AppointmentsView, its event bindings will be on the
list of appointments not on the individual appointments. This will be much harder to
implement naturally using Backbone’s event binding.

Furthermore, if an event is triggered signaling that an individual appointment has
changed and must be re-rendered, we need to re-render the entire list of appointments.
This is not only expensive, but can jar the user’s view by breaking their scrolling position
(if the list is long and they are in the middle). It also means that a single view is listening
to events triggered by many models, which is another code smell.

In well designed server-side applications, Templates.Appointments will simply loop
over the appointments and immediately render a Templates.Appointment template
for each one, thus delegating that work onto another class. This is what we want to do in
Backbone. The difference is that, in Backbone, it is much simpler and more natural to have
views call subviews, instead of having templates call subtemplates.

7.3. The Solution
First, we need a new application structure:

• Models.Appointments

Collection View

54

• Collections.Appointments

• Views.Appointments

• Templates.Appointments

• Views.Appointment

• Templates.Appointment

We have added a second view and second template to handle individual
appointments. Let’s take a look at what the top level Templates.Appointments and
Views.Appointments might look like:

Templates.Appointments = _.template(
 "<h2>Here is a list of Appointments</h2>"
);

Views.Appointments = Backbone.View.extend({
 template: Templates.Appointments,

 initialize: function(options) {
 _.bindAll(this, 'render', 'addAll', 'addOne');
 this.collection.bind('add', this.addOne);
 },

 render: function() {
 $(this.el).html(this.template());
 this.addAll();
 return this;
 },

 addAll: function() {
 this.collection.each(this.addOne);
 },

 addOne: function(model) {
 view = new Views.Appointment({model: model});
 view.render();
 $(this.el).append(view.el);
 model.bind('remove', view.remove);
 }
});

Collection View

55

$(function() {
 // Create a collection
 var appointments = new Collections.Appointments([
 {title: 'Doctor Appointment', date: '2011-01-04'},
 {title: 'Birthday Party', date: '2011-01-07'},
 {title: 'Book Club', date: '2011-01-14'}
]);

 // Create our top level view attached to the dom
 new Views.Appointments({
 collection: appointments, el: $('#appointments')
 }).render();
});

Here is what Views.Appointments is responsible for:

1. Rendering its own template (the template data not relevant to individual appointments)

2. Iterating over Collections.Appointments

3. Creating new Views.Appointment when a new appointment is added to the collection
and appending that view’s DOM element to its own

4. Asking the view to remove itself when the model is removed from the collection

More importantly, note what Views.Appointments is not responsible for:

1. Rendering individual appointments

2. Listening to events on individual appointments

3. Updating the individual appointment view

4. Removing the view when a model is destroyed

Now that we have that sorted out, let’s look at Templates.Appointment and
Views.Appointment:

Templates.Appointment = _.template(
 "<div class='title'>{{ title }}</div>" +
 "<div class='date'>{{ date }}</div>"
);

Collection View

56

Warning

Try to keep javascript code out of templates. It is a good habit to pass a JSON-style
object to a template, not pass a full model to a template. The key point here is to
pass key value pairs of JSON primitives like integers and strings, and not expect
functions to be available. Avoid iteration by doing the iteration in the view and
creating subviews. Conditionals are subjective, if they are short it is OK, but as
they grow, consider subtemplates or subviews.

Views.Appointment = Backbone.View.extend({
 template: Templates.Appointment,

 initialize: function(options) {
 _.bindAll(this, 'render', 'remove');
 this.model.bind('change', this.render);
 this.model.bind('destroy', this.remove);
 },

 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 },

 remove: function() {
 $(this.el).remove();
 }
})

Here is what Views.Appointment is responsible for:

1. Rendering an individual appointment

2. Updating the view when the appointment changes

3. Removing the view when the appointment is destroyed

An interesting distinction between the destroy and remove events can be observed here.
Both are causing the same effect in the view and in the DOM, but they are very different
events!

Collection View

57

The destroy event occurs when the model is deleted from the persistence system (the
server, or client storage, etc.). For example, we could have a button on our view called
"Delete". Or, more importantly, there could be a button on an entirely different part of
our application that deletes models.

Consider a side-panel that has a button called "Remove all read appointments" that only
removes appointment models if they have the read attribute set. We could easily say,
"when the delete button is clicked, remove this element". If we do that, we would have
to do that for every instance that a model is deleted in some way and would need to hook
it up to every view that displays that model. The power of events in Backbone is that, by
binding to relevant events, we can avoid this duplication.

We also need to be aware of remove actions, because we may be maintaining multiple
collections with the same set of models in them. Consider if we had all our appointments
in a global MyApplication.Appointments, but then we created two sub-collections:
MyApplication.ReadAppointments and MyApplication.UnreadAppointments.
Any time a Model.Appointment was marked as read or unread, we move it from one
collection to the other. In memory, those are the same Model.Appointment in the top-
level MyApplication.Appointments and in the sub-collections.

If we had a Views.Appointments for each of the sub-collections, we need to remove the
view elements on a remove event, but the model is not deleted, just removed from the
collection. Since this is a Collection View we are representing the state of the collection,
and must modify the view to mirror the collection’s state.

Tip

Always try to use the most appropriate event when binding to an action. Don’t
see the right event? We will cover firing and listening to custom events in a later
chapter.

7.4. Conclusion
The Single Responsibility Principle is just as important in client-side Javascript as it is
in server-side code. It is an indication of good, object-oriented design that each entity
is responsible for a single task. The Collection View divides up the tasks of iteration,
interactivity, and output into separate objects, each with their own simple goals.

58

Chapter 8. View Signature

8.1. Introduction
The View Signature pattern is a form of caching to prevent redraws in the browser. It helps
short-circuit unnecessary redraws by defining a cache key method and checking if the key
changes.

8.2. The Problem
Whenever a view is rendered, there are costs inflicted on the user:

1. The browser must render the view. This takes time and effort, even if it is only a small
amount

2. The view will "blink" while the application empties the element and fills it in with new
content

3. Scrolling can be interrupted if the view is long and the user has scrolled down into it

It is disturbing to see content blink on a page, and it is very annoying to have your
scrolling position change while using a site. In the worst, case, it may be impossible to
scroll the page because the view keeps being re-rendered. This behavior is undesirable in
any web application.

8.3. The Solution
There are two tactics for dealing with these problems, each with their own pros and cons.
The first is View Signatures, which we will discuss here, and the second is Fill-In Views,
which we will discuss in the next chapter.

A View Signature avoids the rendering of a view when the output would be identical to
what is currently rendered. Often, events are fired in Backbone that may or may not be
relevant to the view. The view does not care to differentiate between different types of

View Signature

59

events (or different objects on which the event is fired) because that sort of computation
could be difficult, costly, and beyond the responsibility of the view.

The goal of a View Signature is to simply and efficiently decide if the view is stale and
needs to be re-rendered.

8.3.1. What is a Signature?
A View Signature is a condensed representation of the contents of a view. It should
conform to the following rules:

1. Two views cannot have the same signature and also have different HTML output

2. Two views cannot have different signatures and also have the same HTML output

In this way it is very much like a cache key for the contents of the view.

8.3.2. Signature Module
First, let’s define a simple signature module we can use in our views to keep them cleaner:

Modules.SignedView = {
 updateSignature: function() {
 newSignature = this.signature();
 if (newSignature !== this._signature) {
 this._signature = newSignature;
 return true;
 }
 return false;
 }
}

The updateSignature method updates the signature if it has changed, calling
this.signature(), which the class being mixed into needs to define. It will return true
if the signature changed and false if it did not change. Now we can include this module
into any view and all we have to do is define signature and short-circuit render if
updateSignature returns true. Now that we have that out of the way, let’s look at a few
signature methods.

View Signature

60

8.3.3. A Simple Example: MD5
The simplest example (other than the HTML of the view itself) is an MD5 hash of the
rendered HTML. The problem here is that, while it is a very simple implementation that
prevents the view from being re-rendered, it is not very efficient. The inefficiency stems
from the view, which has to be generated in its entirety in order to determine if it is the
same. However, since it does accomplish the goal of avoiding a re-render, it is a legitimate
solution (especially for an extremely complex view). Let’s take a look at what an MD5
signature for Views.Appointment from the Collection View chapter looks like:

Views.AppointmentMD5 = Backbone.View.extend(_.extend({
 template: Templates.Appointment,
 render: function() {
 if (this.updateSignature()) {
 $(this.el).html(this.template(this.model.toJSON()));
 }
 return this;
 },

 signature: function() {
 return hex_md5(this.template(this.model.toJSON()));
 }
}, Modules.SignedView));

Note

We are using the MD5 algorithm from http://pajhome.org.uk/crypt/md5/md5.html
by Paul "Paj" Johnston

This code generates an MD5 hash of the HTML. We call this.updateSignature() to
check if the signature has changed, if it has changed, we’ll render the view.

The problem with the MD5, as previously stated, is that we need to render the view to
HTML to tell if we need to complete the rendering work. The higher up the rendering
chain we can push the logic, the more efficient our signature will be. Also, observant
readers may have noted that we need to render the template twice, based on how we
implemented the signature method and the signature module. We could use an internal
variable or some other mechanism to only render once, but the point of this signature was
simplicity, not speed, so we won’t get into it here.

http://pajhome.org.uk/crypt/md5/md5.html

View Signature

61

8.3.4. A Fast Example: Model Data
In this example, we use the data of the model to generate a signature. This will be superior
to the MD5 method because we can abort the rendering of HTML by doing a simple string
comparison. The only caveat here is that we need to be sure that our view only depends on
model data, so anything passed into the template should be included in the signature.

First, let’s look at our template:

Templates.Appointment = _.template(
 "<div class='title'>{{ title }}</div>" +
 "<div class='date'>{{ date }}</div>"
);

As we can see here, our template only depends on the title and date attributes. So, let’s
define our signature so that it only depends on those attributes:

Views.AppointmentData = Backbone.View.extend(_.extend({
 template: Templates.Appointment,
 render: function() {
 if (this.updateSignature()) {
 $(this.el).html(this.template(this.model.toJSON()));
 }
 return this;
 },

 signature: function() {
 return [
 this.model.get('title'),
 this.model.get('date')
].join(';');
 }
}, Modules.SignedView));

This new method has two advantages:

1. We compute and compare the signature without rendering the template

2. We are not depending on an additional library for our signature computation (since we
are already using jQuery)

View Signature

62

Now, when the model changes, change events would fire for attributes like read or
favorite. Since we only care about title and date, we will not re-render the view
unless those attributes change. The trade-off here is that the programmer needs to keep the
signature in sync with the template.

Tip

An even simpler solution in this case would be to remove the binding of change to
render and replace it with a bind of change:title and change:date to render.
That way, we only re-render when those attributes change. However, this solution
is limited to situations in which the template only depends on attributes and not
computed information performed by the view.

63

Chapter 9. Fill-In Rendering

9.1. Introduction
Fill-In Rendering is a form of caching to minimize the amount of structural redraws
performed when updating the DOM by keeping the structure in the template and then
updating elements' contents with attributes from the models directly.

9.2. The Problem
Fill-In Rendering tackles the same problem as View Signatures. Whenever a view is
rendered the following costs are inflicted on the user:

1. The browser must render the view. This takes time and effort, even if only a small
amount

2. The view will "blink" while the application empties the element and fills it in with new
content

3. Scrolling can be interrupted if the view is long and the user has scrolled down into it

View Signatures handle this problem very quickly by short-circuiting rendering when
there is no change in the view. However, often data changes and views must be updated to
reflect new information. We still want to avoid flickering and scroll interruption, while at
the same time minimizing the amount of work the browser has to do. This is where Fill-In
Rendering comes into play.

Tip

Fill-In Rendering and View Signatures handle the same problems, but they are not
mutually exclusive. In fact, they work very well together!

Fill-In Rendering

64

9.3. The Solution
Fill-In Rendering only updates the portions of the view that have changed, while
leaving the scaffolding of the view in place. This means that the DOM element should
not have its HTML set as a whole. Instead the dynamic attributes will have HTML set
individually.

Here is the original template and render method for an Appointment:

Templates.Appointment = _.template(
 "<div class='title'>{{ title }}</div>" +
 "<div class='date'>{{ date }}</div>"
);

Views.Appointment = Backbone.View.extend({
 template: Templates.Appointment,

 initialize: function(options) {
 _.bindAll(this, 'render');
 this.model.bind('change', this.render);
 },

 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 }
})

Note how any time the view is rendered, the title and date <div> tags will be recreated
and reset on the DOM element to which the view is bound. This is not too bad for
Views.Appointment, but consider if there was a small static description of what a
appointment was and its significance. Every time we have to re-render a bunch of
appointments, that text would be reset, which would cause all the divs to bounce up (as the
text was removed) then spring back down as they are individually populated.

Let’s take a look at how we would implement Fill-In Rendering on Views.Appointment:

Templates.Appointment = _.template(
 "<div class='title'></div>" +
 "<div class='date'></div>"
);

Fill-In Rendering

65

Views.Appointment = Backbone.View.extend({
 template: Templates.Appointment,

 initialize: function(options) {
 _.bindAll(this, 'render');
 this.model.bind('change', this.render);
 $(this.el).html(this.template());
 },

 render: function() {
 this.$('.title').html(this.model.get('title'));
 this.$('.date').html(this.model.get('date'));
 return this;
 }
});

First, we have modified the template such that it no longer renders any dynamic
information. It only fills the HTML structure of the view. Second, we have rendered the
HTML of the template during initialization. Third, when asked to render, we simply fill in
title and date.

You may be asking yourself, "why is it OK to render during initialization?" On
initialization Backbone creates an element, el, not attached to the DOM for us to
manipulate when the view is initialized. It is a good practice to have the caller of a View
be responsible for attaching the element to the DOM, and it will do so after it has also
called render. Now, subsequent calls to render on a change event only modify the
properties of the DOM that are dynamic.

9.4. A Quick Refactor
Now that we have the Fill-In Rendering pattern defined, let’s look at how we might
refactor it:

Modules.FillInView = {
 fillInAttributes: function() {
 _(this.fillInBindings).each(function(value, key) {
 this.$(key).html(this.model.get(value))
 }, this);
 }
};

Fill-In Rendering

66

Views.AppointmentIntrospect = Backbone.View.extend(_.extend({
 template: Templates.Appointment,

 fillInBindings: {
 '.title': 'title',
 '.date': 'date'
 },

 initialize: function(options) {
 _.bindAll(this, 'render');
 this.model.bind('change', this.render);
 $(this.el).html(this.template());
 },

 render: function() {
 this.fillInAttributes();
 return this;
 }
}, Modules.FillInView));

With that, all we have to do is define a fillInBindings object on the view such that
the keys are jQuery selectors and the values are model attributes. Then we can call
fillInAttributes to update the view with the newest information.

Warning

In the examples in this section, we use model.get. This is only for data that
is already javascript and HTML-safe. If you are rendering user data, use
model.escape.

9.5. Conclusion
Implementing the Fill-In View pattern results in less page blink, less scrolling interruption,
and faster render times. It also lets us use animations to transition changes in elements,
which we will cover more in Chapter 10, Actions and Animations. Keep in mind that like
any caching strategy, this pattern has its trade-offs. Pure templating is a simpler solution
and therefore is less prone to developer error.

67

Chapter 10. Actions and Animations

10.1. Introduction
Due to Backbone’s evented nature, Actions and Animations are handled differently during
the course of manipulating objects. In this chapter we cover how to bind animations in
common scenarios.

10.2. The Problem
Consider a very common feature of many web applications: when something is deleted or
removed, its UI element fades away or zips up into nothing. Normally this is implemented
by daisy-chaining the UI element removal action to the delete action. Here is an example
in jQuery:

$.ajax({
 url: "/objects/"+object.id,
 type: 'DELETE',
 success: function() {
 $('object-'+object.id).fadeOut(250);
 }
});

We could adapt this exact process pretty easily in Backbone, here is an example of the
wrong way to fade out the view:

/* Hey this code is a bad idea, so don't copy it! */
appointment.destroy({success: function(model, response) {
 $(model.view.el).fadeOut();
})

This looks really similar to our jQuery solution, so what’s wrong with it?

First, fading out the view is not dependent on the destroy call finishing—it is dependent on
the model actually being deleted client-side, which will be conveyed by its state. Second,
the model should not have a reference to its view. This is a common shortcut that causes a

Actions and Animations

68

lot of unidiomatic backbone code. The view should handle any of its actions based on the
model’s state.

Warning

If you are using callbacks on Backbone actions, you’re doing it wrong! There
are a few rare exceptions to this rule, but you should think twice before using a
callback.

10.3. The Solution
From a user’s perspective the action of deleting an item and seeing it go away are tightly
intertwined. However, are these actions truly directly related? Actually, there is an
alternate view of the situation that is much more aligned with how Backbone operates:

1. We ask the server to delete the object, it responds OK

2. The object is updated and is marked as deleted (client-side by Backbone’s sync on the
model)

3. The UI element is removed because its model was deleted

As server-side programmers, we are always drawn to the fact that the server said OK,
confirming the object was deleted. However, from the client-side perspective, we do not
care what the server says—we just care about the state of the object. Therefore instead of
daisy-chaining the removal of the UI element after the successful response from the server,
we will bind the removal of the UI element to the change in the model.

Let’s see what it would look like to modify our AppointmentView so that when we delete
an appointment, it fades out the view:

Actions and Animations

69

Views.Appointment = Backbone.View.extend({
 events: {
 "click .delete": "delete"
 },
 template: Templates.Appointment,
 initialize: function(properties) {
 _.bindAll(this, 'render', 'remove', 'delete');
 this.model.bind('change', this.render);
 this.model.bind('destroy', this.remove);
 },
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 },
 remove: function() {
 $(this.el).fadeOut(250);
 },
 delete: function() {
 this.model.destroy();
 }
});

Pretty simple! Now, any time an object is removed, we fade out the element instead of just
removing it.

In a more traditional web application, we might have half a dozen places where an object
is deleted. This would require an update to each one with the new behavior. But in
Backbone, the deletion of the object is announced with an event to which any object can
listen.

Let’s take a look at another possible evented change: marking an Appointment as a
favorite:

Actions and Animations

70

Views.FavoriteAppointment = Backbone.View.extend({
 events: {
 "click .set-favorite": "setFavorite"
 },
 template: Templates.Appointment,
 initialize: function(properties) {
 _.bindAll(this, 'render', 'setFavorite', 'updateFavorite');
 this.model.bind('change', this.render);
 this.model.bind('change:favorite', this.updateFavorite);
 },
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 },
 setFavorite: function() {
 this.model.save({favorite: (!this.model.get('favorite'))});
 },
 updateFavorite: function() {
 $(this.el).toggleClass('favorite', this.model.get('favorite'));
 }
});

First off, we describe an event. When a user clicks a DOM element with the class
favorite, we want to run the setFavorite method. setFavorite will toggle the model’s
favorite status. Now, look at the initializer: we are binding a change on the favorite
attribute to run the updateFavorite method. updateFavorite is going to toggle a CSS
class on the element to mark it as a favorite or not.

The most important and relevant thing to note in this code is that the save call to modify
the model does not have a callback. We have bound all our functionality to events. Thus,
we have fully decoupled the operation and its effects.

10.4. Conclusion
Decoupling actions and outcomes is the Backbone Way. Cleaner and less coupled
code arises from removing dependencies between objects, and allowing objects to pass
messages to each other. In Backbone, message passing is handled through events, and
the best way to decouple Backbone objects is to expose a clear API of events to which
concerned objects can bind themselves. As we have seen in this chapter, using events to
pass messages yields clean and flexible code when dealing with animations.

71

Chapter 11. Reduced Models and
Collections

11.1. Introduction
Reduced Models and Collections is a pattern that describes how to maintain and
display aggregated data cleanly by creating meta-models and collections that represent
computations performed on the first-class data objects of an application.

11.2. The Problem
Oftentimes you will find yourself wanting to aggregate information for display by
Backbone views. The best approach for doing this might not be obvious at first. By
leveraging the law of separation of concerns, it is possible to come up with an elegant,
maintainable solution.

For this recipe, consider a calendar application backed by a server with a standard
RESTful endpoint for Appointments. We already have the calendar working—creating
appointments, displaying them on the calendar, deleting them, and updating them works
just fine. Now we want to make a calendar sidebar that has output that includes:

• January (4)

• February (2)

• March

• April (7)

• etc…

All of the information required to render this sidebar is already available. It is sitting in our
collection and models. So let’s explore a couple of approaches to get this done.

Reduced Models
and Collections

72

11.3. The Solution
11.3.1. Simple Solution: A View

The easiest thing to start with is a (somewhat) simple view like this:

/* Note: this code may not run. As it is not the ideal solution
 it has not been thoroughly tested. */
Views.MonthCountView = new (Backbone.View.extend({
 initialize: function() {
 this.collection.bind('all', this.render);
 _.bindAll(this, 'render');
 },
 render: function() {
 $(this.el).empty();
 var months = this.collection.reduce(function(memo, appointment) {
 var monthNumber = appointment.get('monthNumber');
 if (!memo[monthNumber]) {
 memo[monthNumber] = 0;
 }
 memo[monthNumber]++;
 return memo;
 }, {});

 ((months).keys()).each(function(monthNumber) {
 var monthName = MyCalendar.NumberToMonthName(monthNumber);
 var count = months[monthNumber];
 if (count > 0) {
 $(this.el).append(''+monthName+' ('+count+')');
 } else {
 $(this.el).append(''+monthName+'');
 }
 });
 }
}))({el: $('#month-count'), collection: MyCalendar.Appointments});

Let’s walk through this code. In the initializer we are watching the collection. Whenever
anything changes we re-render our MonthCountView. We are using an Instantiated View
pattern here since we bind to a DOM id of month-count.

In render, we reduce the appointments to an object that will look like this:

Reduced Models
and Collections

73

{
 1: 4,
 2: 2,
 3: 0,
 4: 7
 /* etc */
}

The key of this data structure is the month number. The value is the number of
appointments in that month.

Next, we iterate over the keys (the monthNumber) and exchange the monthNumber (e.g.
1) for a monthName (e.g. "January"). The NumberToMonthName method, which is defined
elsewhere in our app, handles this for us. Next, we grab the count from our reduced object.

Lastly, we generate our string and append it to our view. We append li elements under the
assumption that #month-count is a ul element.

Some observations about this solution:

1. It works. This does solve our requirement of having a month count list.

2. There is a lot of non-view code in this view. We access a collection that does not
directly pertain to the view being rendered. We are accessing the Appointments
collection but we are not rendering Appointments. That is a Backbone code smell.

3. There are only 6 lines of view code. When we empty the element and when we fill it
with li elements.

4. Our reduced data is only accessible within this view. This are no means for anything
else in the application to access the per-month count. If another view needed this
information, it would be forced to calculate it itself, violating the DRY principle 1.

5. The reduced data is not in the form of objects, but as pure JSON with an implicit
structure, which makes it brittle.

11.3.2. Better Solution: A Reduced Collection
You might have noticed that this is a Collection View. We are rendering a Collection of
aggregated MonthCount objects. So what we really want to do is implement the Collection

Reduced Models
and Collections

74

View pattern with a Collection of MonthCount models, a MonthCounts view, and a
MonthCount view. Let’s take a look at each of these pieces from the bottom up.

The model is just going to be a storage system for attributes and a source of appointments:

Models.MonthCount = Backbone.Model.extend();

The Collection is where things get interesting. We define a recompute method whose job
is to reduce Appointments down to a collection of MonthCount models:

Collections.MonthCounts = Backbone.Collection.extend({
 model: Models.MonthCount,
 initialize: function(models, options) {
 this.collection = options.collection;
 this.collection.bind('all', this.recompute);
 _.bindAll(this, 'recompute');
 this.recompute();
 },
 recompute: function() {
 this.reset(_.map(_.range(0,12), function(monthNumber) {
 var count = this.collection.select(function(model) {
 return model.getMonth() === monthNumber;
 }).length;

 return {
 monthName: Models.Appointment.numberToMonth(monthNumber),
 count: count
 }
 }, this));
 }
})

We iterate over each month number, finding all of the appointments for this month and
counting them, then we return an object in the following format:

[
 {monthName: "January", count: 4},
 {monthName: "February", count: 2},
 {monthName: "March", count: 0},
 {monthName: "April", count: 7}
 /* etc */
]

Reduced Models
and Collections

75

That array is passed directly to the reset method on the MonthCounts collection to empty
it out and populate it with models with those attributes.

This is a nice encapsulation of the reduction into a Collection. It only deals with the
collection it was initialized with, the models in that collection, and MonthCount model.
There is absolutely no view code here at all.

Let’s take a look at what the MonthCountsView looks like:

Views.MonthCounts = Backbone.View.extend({
 initialize: function() {
 this.collection.bind('all', this.render);
 _.bindAll(this, 'render');
 },
 render: function() {
 $(this.el).empty()
 this.collection.each(function(monthCount) {
 $(this.el).append(
 (new Views.MonthCount({model: monthCount})).render().el
);
 }, this);
 }
});

This is a straightforward Collection View. We initialize it with a MonthCounts collection,
to which it binds all the appointments on the collection to render. Rendering empties
out our div and fills it with the DOM elements of MonthCount views for each of the
MonthCount models in our collection.

This is a beautiful separation of concerns. All that MonthCountsView worries about is
aggregating subviews for its collection. There are no reductions being done. There is not
even any templating!

Next, let’s look at the view for the MonthCount:

Reduced Models
and Collections

76

Views.MonthCount = Backbone.View.extend({
 tagName: 'li',
 render: function() {
 var text = this.model.get('monthName');
 if (this.model.get('count') > 0) {
 text += " ("+this.model.get('count')+")";
 }
 $(this.el).text(text);
 return this;
 }
})

This view is solely responsible for turning a MonthCount model into its HTML
representation. Again there is no reduction or any reference to any other model or
collection other than the one that we explicitly render here.

Finally, here is the code used to bootstrap this application:

$(function() {
 var appointments = new Collections.Appointments([
 {title: 'Doctor Appointment', date: '2011-01-04'},
 {title: 'Birthday Party', date: '2011-01-07'},
 {title: 'Book Club', date: '2011-02-14'}
]);

 var month_counts = new Collections.MonthCounts(
 [], {collection: appointments}
);

 (new Views.MonthCounts({
 collection: month_counts, el: $('#month-counts')
 })).render();
});

11.4. Conclusion
Although our original solution required fewer lines of code, there are several benefits of a
Reduced Models and Collection approach:

1. it is re-usable in other areas of the application

Reduced Models
and Collections

77

2. it is much cleaner and more readable in its individual parts

3. it is made of components that have limited concerns

The most important goal achieved by restructuring our solution is that every individual
component performs only a single task. The MonthCountsView only generates
MonthCountView views from the MonthCounts collection. The MonthCounts collection
only reduces Appointments into MonthCount models. The MonthCount view only renders
a MonthCount to HTML. If we need to fix a bug, we know exactly where to look and we
know that the extent of the bug will be limited to the object that is failing to perform its
duty.

78

Chapter 12. Non-REST Models

12.1. Introduction
The Non-REST Models pattern covers how to introduce actions into Backbone models that
cannot use the default save method because the server is not purely REST-ful.

12.2. The Problem
Most web developers would agree that REST is the way to go for clear and accessible
APIs. In real life, however, we are often treated to APIs that are anything but easy to use.
Sometimes we have to interact with a legacy system, or some special route in our system
has to be different in one way or another. Let’s look at a couple of situations we might find
ourselves in and how to handle them in Backbone.

12.3. The Solution

12.3.1. Special Action

Let’s consider our Calendar application again. Our Appointments are RESTful, except for
one new action: publish. Instead of publishing an Appointment appointment by saving
it with published: true, we have a special route in our system /appointments/<id>/
publish to which we need to POST.

In a situation like this, we almost always want to use the normal save() method. For the
usual create and update, things should flow through Backbone’s save(). But, for our
"special" API call, we create a separate method:

Non-REST Models

79

Models.Appointment = Backbone.Model.extend({
 /* the rest of the model is normal */
 publish: function() {
 var model = this;
 var options = {}
 options.url = this.url() + '/publish';
 options.data = {};
 options.success = function(resp, status, xhr) {
 model.set({published: true});
 };
 return (this.sync || Backbone.sync).call(this, 'create', this, options);
 }
});

We define a publish method on the model that creates the appropriate Backbone.sync
request. We set the url to include a trailing /publish. Our Appointment model’s url is
normally /appointments/<id> so we turn that into /appointments/<id>/publish.

Next, we explicitly set data to an empty object so as not to confuse the server with the
model parameters, which sync would send for us by default. The last option is a success
callback to set the model’s published attribute to true if the call succeeds.

The final line is either calling this model’s overridden sync method or Backbone’s sync
method. We have not overridden sync, but it is a good practice to include this check to
future-proof code (hint: we do it in this chapter). Calling the sync method with the create
action will be translated to POST. In addition to the action, we also pass the usual model
and options arguments to sync.

Tip

When we set out to tackle this problem, we could have simply called jQuery
directly instead of using Backbone’s sync. It may have been quicker in the short
term, but it is generally a good idea to try to stick to the norm so that future code
can continue to follow Backbone’s practices. For example, by calling set, the
event change:published will now be fired after this completes. By using url()
the publish method will change with the model if the main url changes.

Non-REST Models

80

12.3.2. Special Persistence Layer
By default, Backbone’s sync uses jQuery to make HTTP requests to a remote RESTful
resource. But what if we wanted to change this around entirely and just use HTML5 local
storage? Luckily, since all persistence is done through Backbone.sync, all we have to do
is override that method for each case. In fact, the awesome folks at DocumentCloud have
already written a Backbone local storage module 1.

Rather than introducing an alternate scenario and solution and explaining how to achieve a
special persistence layer in that fashion, let’s walk through DocumentCloud’s solution and
explain how it fits in to the big picture. This discussion won’t cover how the Local Storage
module is implemented—only how they replace Backbone.sync in order to store data via
their module:

/* Source code from:
 * http://documentcloud.github.com/backbone/docs/backbone-localstorage.html
 */
Backbone.sync = function(method, model, options) {

 var resp;
 var store = model.localStorage || model.collection.localStorage;

 switch (method) {
 case "read": resp = model.id ? store.find(model) : store.findAll(); break;
 case "create": resp = store.create(model); break;
 case "update": resp = store.update(model); break;
 case "delete": resp = store.destroy(model); break;
 }

 if (resp) {
 options.success(resp);
 } else {
 options.error("Record not found");
 }
};

There are four possible methods for sync:

1The Backbone local storage module can be found at: http://documentcloud.github.com/backbone/docs/backbone-
localstorage.html

http://documentcloud.github.com/backbone/docs/backbone-localstorage.html
http://documentcloud.github.com/backbone/docs/backbone-localstorage.html

Non-REST Models

81

1. read: find a model by id or retrieve all the models

2. create: create a model with the given attributes and set the model’s id on success

3. update: update the given model’s attributes

4. delete: delete a model from the storage layer

In each of these cases, we delegate to the local storage module to perform the
corresponding action. To support Backbone, a storage solution only needs to support these
four actions and return either a success or failure response.

Notice that there are no mentions of firing events in this code. This is because events are
fired above the sync method in the caller. So, for an update, the caller would be the save
method, which looks like this:

/* Set a hash of model attributes, and sync the model to the server.
 * If the server returns an attributes hash that differs, the model's
 * state will be `set` again.
 */
save : function(attrs, options) {
 options || (options = {});
 if (attrs && !this.set(attrs, options)) return false;
 var model = this;
 var success = options.success;
 options.success = function(resp, status, xhr) {
 if (!model.set(model.parse(resp, xhr), options)) return false;
 if (success) success(model, resp, xhr);
 };
 options.error = wrapError(options.error, model, options);
 var method = this.isNew() ? 'create' : 'update';
 return (this.sync || Backbone.sync).call(this, method, this, options);
}

Notice how save looks a lot like our publish method? This is because we modeled our
publish method after the save method! All save does is set the attributes to the model,
call sync, and signal success or failure. On success, it sets the response from the server to
the model. On failure, it runs the error callback or triggers the error event. By stacking
very simple layers on top of each other to form models, Backbone allows us to override
any section along the way to suit our needs.

Non-REST Models

82

Tip

You can override the sync method on just one particular model, or even just one
instance of a model, or a collection, or an instance of a collection. This is useful if
most models are RESTful and a few are not. Or if most models are server-side, but
some models are kept client-side.

12.4. Conclusion
Exceptional cases always occur, and the true strength of any framework is how it handles
going off the beaten path. Backbone is an effective tool to be used when it fits the RESTful
task at hand, but that is not always the case. Luckily, through methods like sync, set, and
save, it is easy to circumvent Backbone’s naturally RESTful style without having to do
any monkey-patching. Do not be afraid to step outside the realm of Backbone and write
"plain old javascript." When your application’s behavior does not fit with Backbone’s
style, go your own way (but try to maintain interoperability).

83

Chapter 13. Changes Feed

13.1. Introduction
The Changes Feed pattern provides a lightweight way of keeping your data in sync with
the server by applying differences as opposed to reloading data.

13.2. The Problem
The user of a web application is not always the only person (or thing) modifying the
underlying data. For example, in our calendar application, multiple users could be
modifying appointments on the calendar at the same time. An obvious solution to this
issue would be periodically running fetch on our collections to make sure they are up-to-
date. However, this solution has a few problems because a full fetch may:

1. Be a slow operation on the server

2. Re-render a large number of views

3. Incur a large amount of client-side processing

4. Disrupt the browser with a large number of changes

A much better solution would be a changes feed that will only send what has changed
since the last time we checked.

13.3. Changes feed on a Collection
Since Collections are responsible for adding, changing, and destroying Models, they are an
ideal place for a changes feed. Let’s look at how we would implement a changes feed for
our calendar:

Changes Feed

84

Collections.AppointmentChanges = Backbone.Collection.extend({
 model: Models.Appointment,
 url: "/appointments",
 initialize: function(models, options) {
 _.bindAll(this, 'changes', 'processChanges', 'processChange', 'since');
 this.collection = options.collection;
 this.bind('reset', this.processChanges);
 setInterval(this.changes, 15*1000);
 },

 since: function() {
 return this.collection.max(function(appointment) {
 return appointment.get('updated_at');
 });
 },

 changes: function() {
 this.fetch({ data: { since: this.since() } });
 },

 processChanges: function() {
 this.each(this.processChange);
 },

 processChange: function(appointment) {
 var existing = this.collection.get(appointment.id);
 if (existing) {
 if (appointment.get('deleted')) {
 this.collection.remove(existing);
 } else {
 existing.set(appointment.attributes);
 }
 } else {
 this.collection.add(appointment)
 }
 }
});

First of all, we’re setting the URL to the same as the url for Calendar.Appointments, but
when we fetch changes we’re passing a since parameter:

Changes Feed

85

Collections.AppointmentChanges = Backbone.Collection.extend({
 model: Models.Appointment,
 url: "/appointments",
 changes: function() {
 this.fetch({ data: { since: this.since() } });
 },
 // ...
})

The URL in this collection is just a normal index call on the /appointments route. We’re
passing the since parameter to fetch so that the server can send change objects instead of
the full index. Our implementation here depends on a change object looking exactly like
a normal object in the case of an addition or update, and with deleted: true in case of a
deletion.

The since method simply gets the maximum updated_at timestamp from all of our
appointments and sends that to the server.

 since: function() {
 return this.collection.max(function(appointment) {
 return appointment.get('updated_at');
 });
 }

If we have no appointments, since will be ''. In that case, the server will treat it like a
normal index call.

We also setup a 15 second interval to call the changes method. Thus, we are continuously
polling the server for changes:

 initialize: function(models, options) {
 _.bindAll(this, 'changes', 'processChanges', 'processChange', 'since');
 this.collection = options.collection;
 this.bind('reset', this.processChanges);
 setInterval(this.changes, 15*1000);
 },

If the polling call emits a reset event, we run the processChanges method.

At this point, our changes collection is populated with a bunch of Appointment objects.
These appointments represent Appointments that have changed since the timestamp.

Changes Feed

86

The processChanges method is simply an iterator that calls processChange on each
Appointment.

 processChange: function(appointment) {
 var existing = this.collection.get(appointment.id);
 if (existing) {
 if (appointment.get('deleted')) {
 this.collection.remove(existing);
 } else {
 existing.set(appointment.attributes);
 }
 } else {
 this.collection.add(appointment)
 }
 }

processChange performs the following actions:

1. Search the main collection to see if we already have the Appointment in our system

2. If we have the Appointment, check to see if it has been deleted (we would implement
this server side with a deleted boolean), and if it has, remove if from our main
collection

3. If it has not been deleted, set its attributes to the new ones from the server, because
some attribute change has occurred

4. If we do not have an existing Appointment, it means it is new and needs to be added to
our collection

The great thing about this changes feed is that it is so simple. All we have to do is
propagate the change to a corresponding add, update, or destroy call on the model
or collection. None of our code needs to know that a changes feed even exists! Also,
AppointmentChanges only needs to know about the collection it’s instantiated with—
nothing about views, the router or anything else!

13.4. Conclusion
As in Chapter 12, Non-REST Models, sometimes we need to step outside of Backbone’s
RESTful roots to extend our application. Case in point is the Changes Feed, in which a

Changes Feed

87

Backbone collection is not representing data directly. Rather it is a kind of metadata: a
collection of change objects. Collections and models do not have to correspond directly
with a database table on the server. On the contrary, some of the most powerful and
intriguing uses of collections and models are driven by metadata and interact with first-
class data objects as a result.

88

Chapter 14. Pagination and Search

14.1. Introduction
Pagination and Search is a set of recipes that provide an easy way to display and navigate
a large amount of information quickly via a user defined-query or by dividing data across
pages.

14.2. The Problem
There comes a time in any application’s life when there is just too much content to display
at one time. Two tactics for displaying more targeted information to a user are pagination
and search. Search is a feature where a user provides a query and the server sends back
all of the objects that match that particular query. Pagination is when the server will only
present a certain number of elements at a time (known as the per_page number) and the
user can then navigate to the next page. Often, these two features are found together as a
search results page that is paginated.

The simplest solution would be to retrieve all of the data from the server and then perform
the pagination or search on the client-side. This can work up to a certain point, but
performance becomes an issue on both the client and the server.

Alternatively, we can do the pagination and search on the server, which can be optimized
with indexes on the persistence solution. This allows us to only retrieve the exact number
of elements needed to the client, right when they want it. In Backbone, both pagination and
search are implemented in a Collection in a very similar manner. Let’s take a look.

14.3. The Solution
14.3.1. Search

Search is the easier of the two features, so we start there. In search, a user often asks for
a standard index route with with an additional q parameter, representing a query. For
example:

Pagination and Search

89

http://example.com/widgets?q=brown

This URL would return us widgets that matched the query brown. We would expect to
receive the same sort of object that would be returned from the plain widgets url. In
Backbone, we need to modify our url parameter on a collection to retrieve objects that
match a user-given query. Let’s look at what our AppointmentsCollection would look
like if we wanted to show only appointments that matched the query conference:

MyCalendar.ConferenceAppointmentsCollection = new (Backbone.Collection.extend({
 model: Models.Appointment,
 url: '/events?q=conference'
}))();

Now we have a ConferenceAppointmentsCollection that only contains appointments
that match the query conference. Clearly this is only useful if our users only search for
conferences. Let’s modify this so that the url can be dynamic based on a query:

MyCalendar.AppointmentsCollectionSearch = new (Backbone.Collection.extend({
 model: Models.Event,
 url: function() {
 if (this._query) return '/appointments?q='+this._query;
 else return '/appointments';
 },
 query: function(q, options) {
 this._query = escape(q);
 this.fetch(options);
 },
 all: function(options) {
 this._query = false;
 this.fetch(options);
 }
}))();

Now we can search for conferences by running
MyCalendar.AppointmentsCollection.query('conference') and then later reset it
by running MyCalendar.AppointmentsCollection.all(). After setting or resetting
our query we will automatically fetch the collection, which will fire the collection’s
appointments. In turn, this will trigger the appropriate views to be re-rendered, displaying
all of the new data.

Pagination and Search

90

Tip

If your url is already a function, you can use a practice called Currying to
dynamically define the function with the search parameter mixed in. Check out this
Wikipedia article on currying [http://en.wikipedia.org/wiki/Currying:].

14.3.2. Pagination
Pagination is really a specific case of search. Instead of asking for a query, however, we
ask the user for a page. Often, this is done by providing links on our view with a Next and
Previous button to change pages. Let’s look at how we can tie a pagination view to our
collection by first examining our paginator:

$(function() {
 MyCalendar.PaginatorSimple = new (Backbone.View.extend({
 template: _.template("PreviousNext"),
 events: {
 'click .prev': 'previous',
 'click .next': 'next'
 },
 initialize: function() {
 _.bindAll(this, 'previous', 'next', 'render');
 },
 render: function() {
 $(this.el).html(this.template());
 return this;
 },
 previous: function() {
 this.trigger('previous');
 },
 next: function() {
 this.trigger('next');
 }
 }))({el: '#paginator'}).render();
});

The paginator is an Instantiated View. It has a Next and Previous span that are linked to
methods that simply fire methods of the the same name. This means that the paginator it
just a relay for user interaction.

Next, lets look at our collection:

http://en.wikipedia.org/wiki/Currying:
http://en.wikipedia.org/wiki/Currying:

Pagination and Search

91

MyCalendar.AppointmentsCollectionPaginated = new (Backbone.Collection.extend({
 model: Models.Appointment,
 url: function() {
 return '/appointments?page='+this._page;
 },
 initialize: function() {
 _.bindAll(this, 'nextPage', 'prevPage', 'setPage');
 this._page = 1;
 },
 nextPage: function() {
 this.changePage(1);
 },
 prevPage: function() {
 this.changePage(-1);
 },
 changePage: function(delta) {
 this.setPage(this._page + delta);
 },
 setPage: function(page) {
 this._page = page;
 this.fetch();
 }
}))();

The collection has a dynamic url that is set via a function. We keep an internal _page
variable and provide functions to change the page by incrementing or decrementing it.
When the page is changed, we fetch the collection.

At this point, all that remains is to wire these two objects together:

MyCalendar.Paginator.bind(
 'next', MyCalendar.AppointmentsCollectionPaginated.nextPage
);
MyCalendar.Paginator.bind(
 'previous', MyCalendar.AppointmentsCollectionPaginated.prevPage
);

When the user clicks Next the paginator fires a next event, which we bind to the
nextPage method on the collection. We may want to add a bit to these objects to make
the user experience a little better. For example, we could output the current page in the
collection’s view so that the user knew relatively where they where. We could also have

Pagination and Search

92

the paginator listen to a change:page event on the collection and display the page number
with the Next and previous controls. This is left as an exercise to the reader.

Lastly, a common feature of paginators is to show the total number of pages. This should
be done as a separate call to the server, as including this metadata in the collection fetch
would be confusing and hard to extract. A simple page metadata model might look like
this:

MyCalendar.AppointmentPages = new (Backbone.Model.extend({
 url: '/appointments/pages'
}))();

We would implement this server route to return a metadata object in a structure such as:

{ pages: 42, per_page: 10 }

Next, we create a PageView to represent a single page:

Views.PageView = Backbone.View.extend({
 tagName: 'span',
 className: 'page',
 events: { 'click': 'page' },
 initialize: function(options) {
 this._page = options.page;
 _.bindAll(this, 'page');
 },
 page: function() {
 this.trigger('page', this._page);
 },
 render: function() {
 $(this.el).text(this._page);
 return this;
 }
});

The PageView renders a single page and fires a custom page event when it is clicked. We
pass the page number in to its initializer and attach it as an event argument when we fire.
Next we update our Paginator to follow the Collection View pattern:

Pagination and Search

93

$(function() {
 MyCalendar.Paginator = new (Backbone.View.extend({
 template: _.template("PreviousNext"),
 events: {
 'click .prev': 'previous',
 'click .next': 'next'
 },
 initialize: function() {
 _.bindAll(this, 'previous', 'next', 'page', 'render');
 this.model.bind('change', this.render);
 },
 render: function() {
 $(this.el).html(this.template());
 _(this.model.get('pages')).chain().range().each(function(page) {
 var view = new Views.PageView({page: (page+1)});
 this.$('.pages').append(view.render().el);
 view.bind('page', this.page);
 }, this);
 return this;
 },
 previous: function() {
 this.trigger('previous');
 },
 next: function() {
 this.trigger('next');
 },
 page: function(page) {
 this.trigger('page', page);
 }
 }))({el: '#paginator', model: MyCalendar.AppointmentPages}).render();
});

The Paginator now takes a model that represents the page metadata. Whenever the
metadata model changes we re-render the paginator. The render method here is the same
as the Collection View pattern, except we bind the page event on the subview to our own
page method, firing our own page event. By coalescing the events of the subviews into
this one event on the paginator, we can use our collection’s setPage method to set the
collection to a specific page and simply bind our paginator’s page method directly to
setPage:

Pagination and Search

94

MyCalendar.Paginator.bind(
 'page', MyCalendar.AppointmentsCollectionPaginated.setPage
);

Because the page event fires with a single argument representing the page, and the
setPage method expects one argument representing the page, we can wire these two up
directly. Now, whenever a user clicks the page number, it will update our collection’s
route and fetch it.

Warning

We did not restrict the page number to the bounds of the page metadata returned to
the server. A user could continue to click nextPage and go beyond the max page
and get empty pages. It would be a good idea to stifle the triggering of the page,
next, and previous events on the Paginator if the page is out of bounds.

14.4. Conclusion
Similar to Chapter 13, Changes Feed, we are creating a set of meta-objects based on meta-
data to interact with our first class data. By exposing information from the server in a
customizable fashion, we are able to take more control of the way a user interacts with
our application. This chapter also illustrates some of the more complicated interactions
between a large number of objects, and shows how events can be triggered, captured,
manipulated, and re-triggered to create message passing infrastructure in an application.

95

Chapter 15. Constructor Route
The Constructor Route pattern provides a way to seed a form with dynamic initial data
when a user creates an object in a specific context.

15.1. The Problem
Standard Content Management Systems typically contain individual pages for each type
of resource. These resources rarely interact with each other without requiring the user
to navigate to a new page. However, in a dynamic client-side web application, different
resources interact all the time. One pattern that often arises is creating new objects based
on existing objects in the application.

For our calendar example, consider the process of creating a new appointment. Clearly, we
can have a form in which the user selects the year, month, day, and time, then proceeds to
fill in the appointment details. However, we would like to have the user be able to click on
a day on the calendar and pre-fill the form with that date. The application already knows
the date, so pre-populating the date should be a no-brainer. Little things like add up to
respect that our application pays the user. And Backbone makes things like this fairly
trivial on developers as well.

Since we are trying to make our user’s lives easier, it would be a nice touch if this form
was sharable. That is, if the user wants to send the link to someone else to complete or,
more simply, bookmark the form—then it should be possible.

15.1.1. A simple specific route

Tip

Since the following example is the simple and non-ideal solution, the code is not
guaranteed to run and some sections have been removed for brevity.

A simple solution comprises of a route that has a parameter for the year, month, and day:

Constructor Route

96

var Calendar.Router = new (Backbone.Router.extend({
 routes: {
 "create/:year/:month/:day": "create"
 },

 create: function(year, month, day) {
 Calendar.CreateAppointmentView.setDate(year, month, day);
 Calendar.CreateAppointmentView.show();
 }
}))();

This route is tied to the create() method, which sets the date on the form view and
displays it. The form view, and the resulting day view can then be defined as:

Constructor Route

97

var Calendar.CreateAppointmentView = new (Backbone.View.extend({
 template: "", //redacted
 initialize: function(options) {
 _.bindAll(this, 'render');
 this.appointment = new Calendar.Appointment();
 this.appointment.bind('change', this.render);
 },
 setDate: function(year, month, day) {
 this.appointment.set({year: year, month: month, day: day});
 },
 render: function() {
 $(this.el).empty();
 $(this.el).html(this.template(this.appointment.toJSON()));
 },
 show: function() {
 $(this.el).fadeIn();
 }
}))({el: '#create-appointment'});

var Calendar.DayView = Backbone.View.extend({
 events: {
 'click': 'createAppointment'
 },
 initialize: function(options) {
 _.bindAll(this, 'createAppointment');
 },
 createAppointment: function() {
 Backbone.History.navigate([
 'create',
 this.model.get('year'),
 this.model.get('month'),
 this.model.get('day')
].join('/'), true);
 }
})

The create-appointment view exposes the two methods invoked by the router: setDate
and show. The setDate method accepts year, month, and date of the appointment, which
the router pulls from the url (e.g. /create/2011/01/01). The show method does just that
—shows the form if it is hidden. Thus, if the requested url is /create/2011/01/01, the
router will send the appropriate date values to the view, which is then pre-populated with
the date, and shown to the user.

Constructor Route

98

Internally, the create-appointment view keeps an Appointment model to encapsulate
the data being entered. For good measure, we listen for changes on this model (e.g.
from a separate control widget in the application). If the appointment is changed, we
automatically re-render..

Last is the DayView, in which we bind the click event on the background div (so that a
click on an appointment does not trigger the event) to the creation route for that DayView's
Day.

Now, how can we improve this? It handles our problem, but it is not very flexible.
Consider the case where we want to approximate the time based on where on the DayView
we clicked. We would have to go through and update the entire chain from the DayView
to the Router to the CreateAppointmentView so that the method signature matched the
parameters. This is where a Constructor Route shines.

15.2. The Solution
The core idea is to accept object-like syntax through the entire chain so we can have a very
flexible route.

In the router, two things change: the route itself and the function invoked. The route
changes to accept a "splat" of options. Effectively, this route now matches any URL that
begins with /create and stuffs the rest into the options variable. The create route
handler then needs to change to handle the new options format:

Constructor Route

99

Calendar.Router = new (Backbone.Router.extend({
 routes: {
 "create/*options": "create"
 },

 create: function(options) {
 var params = _.reduce(options.split('/'), function(memo, opt) {
 opt = opt.split(':');
 memo[opt[0]] = opt[1];
 return memo;
 }, {});

 Calendar.CreateAppointmentView.set(params);
 Calendar.CreateAppointmentView.show();
 }
}))();

In the create-appointment view, the set method becomes much simpler:

Constructor Route

100

$(function() {
 Calendar.CreateAppointmentView = new (Backbone.View.extend({
 template: _.template([
 "<input type='text' name='year' value='{{year}}'/>",
 "<input type='text' name='month' value='{{month}}'/>",
 "<input type='text' name='day' value='{{day}}'/>"
].join('')),

 initialize: function(options) {
 _.bindAll(this, 'render');
 this.appointment = new Models.Appointment();
 this.appointment.bind('change', this.render);
 },

 set: function(options) {
 this.appointment.set(options);
 },

 render: function() {
 $(this.el).empty();
 $(this.el).html(this.template(this.appointment.toJSON()));
 },

 show: function() {
 $(this.el).fadeIn();
 }
 }))({el: '#create-appointment'});
});

And finally, the day view that invokes the route needs to be able to send the browser to a
route that can be processed by the router and create-appointment form:

Constructor Route

101

Views.DayView = Backbone.View.extend({
 className: 'day',
 template: _.template("{{year}}/{{month}}/{{day}}"),
 events: {'click': 'createAppointment'},
 route: _.template("create/year:{{year}}/month:{{month}}/day:{{day}}"),

 initialize: function(options) {
 _.bindAll(this, 'createAppointment', 'render');
 },

 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 },

 createAppointment: function() {
 Backbone.history.navigate(this.route(this.model.toJSON()), true);
 }
});

Let’s work our way from the bottom up. First, notice that DayView is still specifying which
parameters to send, but now it’s prefixing each value with a key. So our route would look
like:

/create/year:2011/month:01/day:01

Also, we’re using an underscore template for our route, who says views get to have all the
fun? It’s much more readable than the array join we were doing earlier.

Now, if we look in the Router, we can see we’re using a splat option *options which
will match anything after the /create/. This means that options in the create function
will be a string like year:2011/month:01/day:01. So, we split this string on the / and
reduce the array of key:value tuples by splitting on the : and accumulating a params
object. Next, we take that params object and send it to CreateAppointmentView.set.
CreateAppointmentView.set merely delegates to appointment.set since the params
are assumed to translate directly to the appointment’s data format.

This means that we can now build virtually any route—as long as the appointment model
supports the resulting parameters—and they will be set automatically. We can include a
time or allDay option in the route and it gets passed through to the model backing the
view. Nifty!

Constructor Route

102

Warning

We are not encoding the URI components here because we are assuming they are
relatively simple. Keep in mind a URI can only contain 2048 characters. Also, if
our parameters included the / character, this solution would break down. However,
this simple strategy works in many cases were your data is short and simple. If
your data is more complex or input via the user, you should run encodeURI on it.

15.3. Conclusion
Any route in an application can be considered data. In general, many of the routes that an
application uses contain only a small amount of data: "I want to see X." However, a URI
can be up to 2048 characters long, so there is plenty of room in a route to pass along a
substantial message information. This chapter serves as a template for demonstrating ways
of encoding dynamic data into routes. It does not just have to be used to render form data,
it could filter a collection based on a parameter or be used to categorize or sort elements in
a view.

103

Chapter 16. Router Redirection

16.1. Introduction
Although pure client-side redirection is not possible, this recipe will discuss strategies for
achieving the same desired effect.

16.2. The Problem
Redirection—requesting one thing, but being sent another—is not quite as common in
Backbone applications as in its server-side brethren. Even so, there are times when it is
down right handy—even necessary.

In server-side web applications, redirection serves as a means to delegate an action to the
appropriate destination or to send a client to a different destination after an action has been
performed. For example, after creating a calendar appointment, a server-side application
might redirect the user to the newly created event’s URL.

Browsers are smart enough to recognize a server-side redirect action (e.g. an HTTP 302
redirect), skipping them when a user hits the back button. Browsers are not quite so
intelligent about client-side redirects. If a client-side route simply navigates to another
route, the user cannot navigate beyond this point via the back button. The back button will
re-request the client-side redirect, sending the user back to the place from which she was
just attempting to navigate away.

This is definitely not ideal.

16.3. The Solution
In our Calendar application, consider the controls at the top of the application that
navigate forward and back a month. If we were to store the the current month on the
ControlsView, then we might be tempted to simply increment or decrement that number
based on a user clicking "Next" or "Previous" links.

Router Redirection

104

We could get into trouble if the user manually enters a route or if the application navigates
between months in any other way (e.g. skips 6 months ahead). The counter would become
out of sync with the route itself.

A simple solution to illustrate this problem might look like:

Router Redirection

105

/* This code illustrates a BAD IDEA so don't copy it */
var Calendar.ControlsView = new (Backbone.View.extend({
 el: '#calendar .controls',

 events: {
 'click .next': 'nextMonth',
 'click .prev': 'prevMonth'
 },

 initialize: function(options) {
 _.bindAll(this, 'nextMonth', 'prevMonth');
 },

 nextMonth: function() {
 window.location = 'month/next';
 },

 prevMonth: function() {
 window.location = 'month/prev';
 }
}))();

var Calendar.Router = new (Backbone.Router.extend({
 routes: {
 'month/:id': 'month',
 'month/next': 'nextMonth',
 'month/prev': 'prevMonth'
 }

 initialize: function() {
 this.month = 1;
 }

 month: function(id) {
 this.month = 1;
 /* Display the month */
 },

 nextMonth: function() {
 window.location = 'month/' + ((this.month++) % 12);
 },

 prevMonth: function() {
 window.location = 'month/' + ((this.month--) % 12);
 }
}))();

Router Redirection

106

Once the application navigates to month/next, it becomes part of the browser history.
Consider the following steps:

1. The user clicks the "Next" link, which is linked to the month/next client-side route.

2. The application maps month/next to the nextMonth() router method.

3. This month/next URL is stored in the browser’s history.

4. The nextMonth() method adds another entry in the browser’s history, as it now sets
window.location to something like month/2 (if we had been in November).

5. The browser comes to rest displaying February’s appointments.

A user desiring to check on something something back in January might naturally click the
browser’s back button instead of our UI’s "Previous" control. Because month/next is the
previous resource in window.history, the browser would hit the wrong route. Not only
is the route wrong, but is also a redirection route. Thus hitting month/next would also
increment the internally stored this.month value past "2", sending the user to March.

In effect the user would get the opposite of the desired / expected effect of clicking the
Back button.

From a code quality perspective, there are additional problems with our obvious approach.
First, it is an annoyance to keep track of a month variable when the month is right there in
the route (month/2). Furthermore, performing routing in the view is a brittle solution (the
window.location call is routing code!). If we change our routes, we have to hunt through
the application for these calls. It is much better to move this sort of code into the Router.

Thus, a better approach is to create redirection methods on our Router that handle
modifying the route. While the ControlsView is responsible for triggering a next or
previous action, it is not responsible for re-routing the application. It is much better to keep
all of the routing logic inside our Router.

To accomplish this, let’s examine the view first. This should look pretty standard, as we
are only binding methods to the click event on the .next and .prev elements in the view:

Router Redirection

107

var Calendar.ControlsView = new (Backbone.View.extend({
 className: 'controls',

 events: {
 'click .next': 'nextMonth',
 'click .prev': 'prevMonth'
 },

 initialize: function(options) {
 _.bindAll(this, 'nextMonth', 'prevMonth');
 },

 nextMonth: function() {
 this.trigger('next');
 },

 prevMonth: function() {
 this.trigger('previous');
 }
}))();

Notice that we are no longer setting window.location nor are we calling the Router from
the view. Instead, we fire custom events. The reasoning behind this will be discussed more
in Chapter 18, Object References in Backbone, but the bottom line is that, since the Router
is a higher-order object in the application, it would be inappropriate for our lowly view
to give it commands. Instead, the view will fire events that the Router can listen to, if it
deigns to do so.

In the Router, we bind routes a little differently than you may be used to. Generally,
routes are bound via a property called routes that are bound to methods on initialization.
Under the covers, Backbone simply passes each of those key-value pairs to the route
method. Since we are going to re-use the month route, we are binding the route ourselves
in the initialize method:

Router Redirection

108

var Calendar.Router = new (Backbone.Router.extend({
 monthRoute: this._routeToRegExp("month/:id"),

 initialize: function() {
 _.bindAll(this, 'nextMonth', 'prevMonth', 'month');
 Calendar.ControlsView.bind('next', this.nextMonth);
 Calendar.ControlsView.bind('previous', this.prevMonth);
 this.route(this.monthRoute, 'month', this.month);
 },
 // ...
}))();

The this.route(...) call has the same effect of the following entry in the routes
object:

{ 'month/:id', 'month' }

But with the additional goodness of establishing a DRY, robust, decoupled binding
between the view’s next/previous click actions and the next/previous routes.

The rest of our router then becomes:

Router Redirection

109

var Calendar.Router = new (Backbone.Router.extend({
 monthRoute: this._routeToRegExp("month/:id"),

 initialize: function() {
 _.bindAll(this, 'nextMonth', 'prevMonth', 'month');
 Calendar.ControlsView.bind('next', this.nextMonth);
 Calendar.ControlsView.bind('previous', this.prevMonth);
 this.route(this.monthRoute, 'month', this.month);
 },
 month: function(id) {
 /* Display the month */
 },

 nextMonth: function() {
 this.moveMonth(1);
 },

 prevMonth: function() {
 this.moveMonth(-1);
 },

 moveMonth: function(by) {
 var id = this._extractParameters(monthRoute, Backbone.history.getFragment())[0];
 Backbone.history.navigate("month/"+((id+by)%12), true)
 }
}))();

We run the route through an undocumented Backbone method called _routeToRegExp.
This method converts the Backbone-style route into a RegExp we can use for matching
later.

Also in the initialize method, we bind our own nextMonth and prevMonth methods to
the ControlsView's custom events. This event-oriented approach to control flow is much
safer and more flexible for our application in the long-run. All routing decisions are made
in the router, and not spread across various objects throughout the application.

The nextMonth and prevMonth methods are delegating to a moveMonth method
because their functionality is extremely similar—differing only in the direction they are
moving. moveMonth is calling another undocumented method of the Backbone Router:
_extractParameters. This method takes a route RegExp and a URI fragment, returning
us the parameters that we define in the RegExp. Backbone.history.getFragment will

Router Redirection

110

return a browser-normalized URL fragment representing what comes after the # (if using
push-state). The end result is that our :id will match and we receive [id] as a result.

Tip

To be clear, we are using these undocumented Backbone methods to keep our
routing DRY.

Now, when a user clicks the next or previous button on the view, our route will be changed
to the next or previous month. We did this by firing and listening to custom events and
by introspecting and manipulating our current route. This yields a cleaner and decoupled
implementation. Our Router became smarter (by knowing everything about month
routing) and our ControlsView became dumber by losing that same knowledge of month
routing (and even all routing and the flow of the application).

Tip

Objects in Backbone should only concern themselves with behaviors related to
their class name. Views should only have view behaviors, and Routers should
only concern themselves with routing. All other actions should be delegated to
another object (like a view calling its model) or cause an event to fire to which an
interested object can listen (as in the case here where the Router listens to a view).

One final note in our updated solution is the use of Backbone.history.navigate()
instead of setting window.location directly as we had before. Both ultimately do the
same thing—adding a new entry to the browser’s history and potentially forcing the
browser to request that new page. Using Backbone.history.navigate() is always
preferred because it works cross browser with push-state and normal URLs alike.

Important

Manipulating window.location directly is a code-smell in Backbone.js
applications. Always use Backbone.history.navigate().

We call Backbone.history.navigate() with a second argument, true. This tells
Backbone that, in addition to updating the browser’s history and address bar with the
new month’s URL, the corresponding route method should be invoked. That is, if we

Router Redirection

111

Backbone.history.navigate('month/2'), then our month route should fire, which tells
the month() method to fire, rendering the controls view.

Without the true second argument, Backbone simply updates the browser history and
address bar. The calling context would then be responsible for changing internal state as
needed.

16.3.1. Default Routes
Often it makes sense to redirect from an application route or from a resource route to
a more specific location. If our calendar’s entry URL is http://calendar.example.com,
then we might want to redirect the browser to http://calendar.example.com/#month/1
immediately after logging in.

To accomplish something like this, it is again tempting to create a "default" router method
that performs a Backbone.history.navigate() redirection:

/* Don't do this! */
var Calendar.Router = new (Backbone.Router.extend({
 routes: {
 "": "default",
 },

 default: function() {
 Backbone.history.navigate("month/1");
 }
});

This constitutes the poor practice of breaking the user’s Back button on your site, so do
not do it 1. When the browser hits the default route, two additional browser history entries
are created—one for the initial entry point (http://calendar.example.com) and one for the
redirected resource (calendar.example.com/#month/1). If the user clicks the Back button,
the browser will hit the default route, which will promptly redirect back to the page the
user was just trying to leave.

Instead of attempting a true redirect, we do it under the covers:

1Well, maybe on the application start page, but even there it feels henky.

http://calendar.example.com
http://calendar.example.com/#month/1
http://calendar.example.com

Router Redirection

112

var Calendar.Router = new (Backbone.Router.extend({
 routes: {
 "": "month"
 },

 month: function(id) {
 if (typeof(id) == "undefined") id=1;

 /* Display the month */
 }
});

Here, we tie the default route directly to the month() method that would have been
invoked anyway. That method subsequently needs to be a little smarter about handling
undefined IDs, but that is the only real change required.

Ultimately, we achieve our "redirection" to the appropriate resource, without annoying our
user by breaking the Back button.

16.4. Conclusion
True redirection will not work in the browser without significant user experience
consequences. Even so, we are able to mimic redirection behavior by keeping routing
where it belongs: in routing objects.

113

Chapter 17. Evented Routers

17.1. Introduction
The Evented Router pattern uses route cleanup as an example of how to use Router events
to DRY up Router code.

17.2. The Problem
In a modern client-side application, there will be a number of routes, and many ways to
transition in between them. When navigating from one route to the next, the previous route
needs to be cleaned up and the new route needs to be rendered. Since an application with
N routes could potentially have N^2 transitions, adding a new route introduces N new
possible transitions. Clearly it is unreasonable to represent every possible transition as an
application grows. Let’s consider our calendar application, in which we have three main
routes:

1. /month/:id: Show a month

2. /event/:id: Show an event

3. /event/new: Create a new event

A simple router for this scenario might look like:

Evented Routers

114

CalendarRouter = Backbone.Router.extend({
 routes: {
 '/month/:id': 'month',
 '/event/:id': 'event',
 '/event/new': 'new_event'
 },

 initialize: function() {
 _.bindall(this, 'month', 'event', 'new_event');
 },

 month: function(id) {
 reset_event();
 reset_new_event();
 Calendar.MonthView.show(id);
),
 reset_month: function() { Calendar.MonthView.hide(); },

 event: function(id) {
 reset_month();
 reset_new_event();
 Calendar.EventView.show(id);
 },
 reset_event: function() { Calendar.EventView.hide(); },

 new_event: function() {
 reset_month();
 reset_event();
 Calendar.NewEventView.show();
 },
 reset_new_event: function() { Calendar.NewEventView.hide(); }
})

That router is already a little nutty. Clearly adding new routes is only going to make
matters worse. What other options are there?

17.3. The Solution
To solve this problem, we will combine Backbone’s Events with some metaprogramming.
Whenever a Router matches a route, it will fire an event corresponding to the routing
method. So visiting /event/4 matches the route event and will fire route:event. We

Evented Routers

115

will add event binding to our initializer that binds the route:X event to the reset_Y
method whenever X is not the same as Y. In other words, when we route to X, all the other
routes will have their reset method triggered, cleaning up everything but X.

Calendar.Router = new (Backbone.Router.extend({
 routes: {
 '/month/:id': 'month',
 '/event/new': 'new_event',
 '/event/:id': 'event'
 },

 initialize: function() {
 _(this.routes).each(function(destination) {
 _(this.routes).each(function(other) {
 if (destination === other) return;
 // route:x => reset_y
 this.bind('route:'+destination, this['reset_'+other]);
 }, this);
 }, this);
 },

 month: function(id) { Calendar.MonthView.show(id); },
 reset_month: function() { Calendar.MonthView.hide(); },

 event: function(id) { Calendar.EventView.show(id); },
 reset_event: function() { Calendar.EventView.hide(); },

 new_event: function() { Calendar.NewEventView.show(); },
 reset_new_event: function() { Calendar.NewEventView.hide(); }
}))();

Now, if we add a new route, we need a new route method for it as well as a corresponding
reset method. There is no need to modify all the other methods to keep them up to date.
Now, adding new routes is O(1) code modifications, instead of O(N^2)!

As in other recipes, we can extract this behavior into a helpful mixin:

Evented Routers

116

Mixins.AutoResetRouter = {
 autoResetRoutes: function() {
 _(this.routes).each(function(destination) {
 _(this.routes).each(function(other) {
 if (destination === other) return;
 this.bind('route:'+destination, this['reset_'+other]);
 }, this);
 }, this);
 }
}

And now we just need to call this method in our initializer and mix it in:

Calendar.Router = new (Backbone.Router.extend(_.extend({
 routes: {
 '/month/:id': 'month',
 '/event/new': 'new_event',
 '/event/:id': 'event'
 },

 initialize: function() {
 this.autoResetRoutes();
 },

 month: function(id) { Calendar.MonthView.show(id); },
 reset_month: function() { Calendar.MonthView.hide(); },

 event: function(id) { Calendar.EventView.show(id); },
 reset_event: function() { Calendar.EventView.hide(); },

 new_event: function() { Calendar.NewEventView.show(); },
 reset_new_event: function() { Calendar.NewEventView.hide(); }
}, Mixins.AutoResetRouter)))()

Simply by agreeing on this nomenclature of method and reset_method we can handle all
possibly transitions between all states with our mixin and we only have to implement those
methods when we add a new route.

Tip

If you are working with an application with multiple routers, bind all of the reset
methods to a general reset event. Next, define a reset method that triggers the

Evented Routers

117

reset event. Now, from router X you can call Y.reset() whenever X matches a
route to reset all of Y’s views.

17.4. Conclusion
This is definitely one of the more complicated patterns in the book. We are applying
powerful metaprogramming techniques to Backbone’s event structure in order to handle a
combinatorial growth problem. This serves as a solid base from which to extrapolate other
methods of using events in dynamic ways. For example, Backbone models fire change
events as well as attribute-specific change events, like change:name when name changes.
What interesting problems could you solve by dynamically binding to attribute change
events on instantiation of a model?

118

Chapter 18. Object References in
Backbone

Backbone.js is a loose framework. Two different developers can use Backbone with
entirely different patterns and Backbone is perfectly fine with it. One of the very first
pieces of example code I (Nick) read when I was first learning Backbone looked like this:

MyView = Backbone.View.extend({
 initialize: function(options) {
 this.model.view = this;
 }
})

MyModel = Backbone.Model.extend({
 initialize: function(options) {
 _.bindAll(this, 'removeView');
 this.bind('destroy', this.removeView);
 },
 removeView: function() {
 this.view.remove();
 }
})

var model = new MyModel();
new MyView({model: model)});
model.destroy();

Not knowing any better, this was the pattern I used for quite some time when I needed to
remove a view after the model was removed. At this point in the book, it should be clear
that this is the wrong way to remove a view. Instead, we should be using events:

Object References
in Backbone

119

MyView = Backbone.View.extend({
 initialize: function(options) {
 this.model.bind('destroy', this.remove);
 }
})

MyModel = Backbone.Model.extend({})

var model = new MyModel();
new MyView({model: model)});
model.destroy();

This solution is clearly simpler and more succinct. The model has no idea that a view
exists at all. The model’s implementation is completely independent of any other piece of
the application. This is decoupling at its finest.

The view, on the other hand, does still require a reference to the model in order to perform
its duties. In this example, we only use it to bind a destroy event listener, but Backbone
retains the reference under it covers.

So it is OK for a view to hold a reference to a model, but not the other way around. Right?

To answer that question, let’s delve into when and where it is appropriate to pass
references around in Backbone. In particular, notice the code smell in our "newbie" code:
the model knows about its view in order to have the view respond to a change in the
model’s state:

MyModel = Backbone.Model.extend({
 initialize: function(options) {
 _.bindAll(this, 'removeView');
 this.bind('destroy', this.removeView);
 },
 // ...
});

The model should be indifferent to its listeners. In another case, however, it is reasonable
(and 100% necessary) to have a view know about a collection:

Object References
in Backbone

120

MyView = Backbone.View.extend({
 /* note that the `collection` attribute on the options
 * objects is automatically assigned to `this.collection`
 */
 initialize: function(options) {
 _.bindAll(this, 'render');
 },
 render: function() {
 $(this.el).empty();
 this.collection.each(this.addOne);
 },
 addOne: function() {
 view = new OtherView({model: model});
 view.render();
 $(this.el).append(view.el);
 }
})

There is no way we could render a view for a collection without the view knowing about
the collection. This brings us to the first portion of this recipe: the Precipitation Pattern.

18.1. Precipitation Pattern
The precipitation pattern encapsulates the idea that references in Backbone should flow
downstream from higher-order objects. Furthermore, references should never be made
back "up" the stream. The order of Backbone objects from highest to lowest is as follows:

1. Router

2. View

3. Collection

4. Model

It is OK to move "sideways", for example from one view to the next (as in the Collection
View pattern). It is not OK to move "upstream", for example from a Model to a View or a
View to a Router.

Do not think only about the types of objects. Consider their relationships and behavior. It
would be inappropriate for a SidebarView to reference a MainPanel view if one was not

Object References
in Backbone

121

the descendant of the other. However having a TodoView reference a TodoControlsView
would be appropriate if the TodoControlsView was a child view containing a control
panel for a Todo model represented by the TodoView.

Taking this metaphor another step, the water cycle on Earth sees water evaporate to
clouds, which rains down at the tops of the mountains. In Backbone, Events are our rain. A
Model may fire events and a View can listen to them and take action. We may even create
a special customized event for a Model specifically for one of our Views to use, but we do
not reference the View directly. References are the rivers that flow down from the top of
the mountain to the ocean. The only way to communicate back up the chain is by raining
down some events.

18.2. Dependency Injection
As our references flow downstream, there is a specific code pattern that keeps our code
clean and organized: dependency injection. To illustrate how this pattern works, let’s look
at our Calendar view.

Here, we use a global variable, window.Appointments, that holds our collection of
Appointment objects. The MonthView then binds event listeners to that global object:

Object References
in Backbone

122

Calendar.Collections.Appointments = Backbone.Collection.extend({
 model: Calendar.Models.Appointment
});

window.Appointments = new Calendar.Collections.Appointments();

Calendar.Views.MonthView = Backbone.View.extend({
 initialize: function(options) {
 window.Appointments.bind('add', this.addOne);
 },
 render: function() {
 $(this.el).empty();
 window.Appointments.each(this.addOne);
 },
 addOne: function(appointment) {
 var view = new Calendar.Views.AppointmentView({model: appointment});
 view.render();
 $(this.el).append(view.el);
 }
});

window.MonthView = new Calendar.Views.MonthView()

This is a brittle solution. First, we need to ensure there are no variable collisions on
window. Secondly, future changes would necessitate that we update all such references.
For example, if we find that our application needs window.ThisMonthAppointments
and window.LastMonthAppointments, then we would have to replace references to
window.Appointments with these new appointment collection slices.

In this case, MonthView depends on window.Appointments. We cannot change this
dependency, but we can inject it to keep our code a little more flexible:

Object References
in Backbone

123

Calendar.Collections.Appointments = Backbone.Collection.extend({
 model: Calendar.Models.Appointment
});

Calendar.Views.MonthView = Backbone.View.extend({
 initialize: function(options) {
 this.collection.bind('add', this.addOne);
 },
 render: function() {
 $(this.el).empty();
 this.collection.each(this.addOne);
 },
 addOne: function(appointment) {
 var view = new Calendar.Views.AppointmentView({model: appointment});
 view.render();
 $(this.el).append(view.el);
 }
});

new Calendar.Views.MonthView({
 collection: (new Calendar.Collections.Appointments())
});

Notice that in this example we still have the same references but keep them local to
the objects involved. Because dependency injection is such a helpful pattern, views in
Backbone automatically self-assign the keys model and collection.

If multiple views were to reference this collection, we can still dependency inject the
object in our application’s start-up using jQuery’s onReady:

$(function() {
 var collection = new Calendar.Collections.Appointments();
 new Calendar.Views.MonthView({collection: collection});
 new Calendar.Views.MonthSidebar({collection: collection});
});

Note that the collection variable will not survive outside of this method, thus avoiding
the dreaded global variable.

Object References
in Backbone

124

Tip

If you are unable to inject a dependency, it may be an indication that your
application architecture does not follow the precipitation pattern and should be
refactored.

18.3. Conclusion
Keeping your dependencies in check is important for maintaining loosely coupled objects.
By limiting the direction in which references flow and limiting the scope to which those
references are made, we can reduce the number of dependencies "floating around". We
also enforce that the only dependencies of an object are given to it on instantiation. Not
only does this help us write better code, it is an integral part of writing code that is easy to
unit test 1.

1Check out Appendix A, Getting Started with Jasmine if you are interested in unit testing Backbone.

125

Chapter 19. Custom Events

19.1. Introduction
Custom events are a loose mechanism for communicating change between concerns
without the risk of collisions with built-in browser and Backbone events.

19.2. The Problem
Events make life worth living. They make coding fun. They solve all of the problems in
the world. Except when they don’t.

Even after eliminating as many callbacks as possible. Even after dutifully following the
Precipitation Pattern. Even after producing the most beautiful Backbone code possible, it is
still possible to find yourself in event hell.

Event hell is what happens when you find yourself responding conditionally to events.
That is, display this sub-view when the model updates, but only if the collection has this
number of models in it. Otherwise, display the non-compact message.

Events are a fantastic mechanism to decouple the various components of a Backbone
application. But once there are many events flying, it is almost a necessity to start using
custom events.

19.3. The Solution
Backbone invented neither events nor custom events. Events have been part of Javascript
for as long as Javascript has been around. Custom events are a natural outgrowth of
Javascript’s event driven nature. They allow developers to realize the power of DOM
events in their own applications.

Since Backbone is not a DOM framework like jQuery, its events are not clicks and
mouseOvers. Rather, Backbone’s events describe actions that take place in its models

Custom Events

126

and collections. Its events are things like: "add", "remove", "change", "destroy", and the
dreaded "error" event.

Backbone also includes a special little event, named all, which pretty much does what
you might expect. If you are listening for all events, your listener will receive all events
tossed by Backbone parts.

As we have seen throughout this book, there is much power in these events. Naturally,
Backbone does not restrict you to just this subset of events.

In fact, Backbone itself fires namespace attribute events when an attribute in the model is
updated. For instance, if the title attribute is changed, Backbone models automatically fire
a change:title event.

There are any number of reasons that we might want to use our own custom events in
Backbone applications. As mentioned in the introduction, using custom events helps to
further decouple design and to prevent conflicts with built-in Backbone events.

19.3.1. Application Triggered Events
To see this in action, consider the month view of our calendar application once again.
When shifting between months, the collection is being updated via a setDate method to
set the current month (e.g. "2012-02"). When this happens, a number of associated views
need to be updated as well. The page title and document title need to be updated with the
new date. The navigation elements need to be updated to point to the correct month. The
sidebar overview needs to be updated as well.

Listening to the collection’s built-in "all", "reset", or "change:date" events is not a solution
for these disparate views. Each of them would need to contain identical logic to decide if
collection updates are a result of a model being updated or the collection’s date changing.

Rather than asking the event subscribers to discern the kind of change, why not simply
have the source of the change decide for itself?

For instance, when setDate() is invoked, we could immediately trigger the
calendar:change:date event:

Custom Events

127

/* Good, but we can do better */
var Appointments = Backbone.Collection.extend({
 // ...
 setDate: function(date) {
 this.date = date;
 this.fetch();
 this.trigger('calendar:change:date');
 },
 // ...
});

An internal state of the collection is changing, but not necessarily the underlying models or
the collection itself will change. As such, we should not risk triggering the built-in change
Backbone event.

Here, we namespace the event as being specific to our calendar application by prefixing
the event with calendar:. The remainder of the event describes the thing that is occurring
—in this case, our application’s date is changing.

Tip

Naming conventions for events are fairly application specific. They should always
describe the event that is occurring from the perspective of the source of the event,
though it should still read well in the consumer’s context. If in doubt, following the
Backbone convention, but namespaced for your application, is always a reasonable
starting point.

With the collection now generating custom events, the next step it to listen for them. For
that, consider the TitleView, which updates the page title with the current month:

var TitleView = Backbone.View.extend({
 initialize: function(options) {
 options.collection.bind('calendar:change:date', this.render, this);
 },
 render: function() {
 $(this.el).html(' (' + this.collection.getDate() + ') ');
 }
});

Custom Events

128

The TitleView needs to bind to the collection so that it can listen for our custom event.
With that, the page title will be updated to include the current month, as described by the
collection.

Tip

There is no need to explicitly assign the this.collection in a Backbone view.
Backbone will automatically create the this.collection property when it is
passed via new ViewThingy({collection: my_collection}).

When working with events, always keep them as close to the actual change as possible.
When changing months, the event should not fire until the date has actually changed.
That is, the calendar’s date is not really changed until the collection has been successfully
fetched from the backend:

var Appointments = Backbone.Collection.extend({
 // ...
 setDate: function(date) {
 this.date = date;

 this.fetch({
 data: {date: this.date},
 success: _.bind(function() {
 this.trigger('calendar:change:date');
 }, this)
 });
 },
 // ...
});

Here, we supply the date query parameter (via the data attribute supplied to fetch())
so that we collect only a subset of the backend store’s data. By doing so, we have the
opportunity to pass a success callback to the normal fetch() method.

The success callback is the ideal place for the "calendar:change:date" event to originate.
Only if the server successfully responds with with the updated collection information
should the event fire and various views start their corresponding updates.

If anything goes wrong, the same views can remain the same or, possibly, subscribe to an
"error" event to indicate the failure condition.

Custom Events

129

19.3.2. User Triggered Events

Custom events are perhaps even more powerful when the user is triggering them.
Consider, for example, that the user is trying to highlight calendar appointments with
matching titles.

The CalendarFilter view might look something like:

var CalendarFilter = Backbone.View.extend({
 template: _.template(
 '<input type="text" name="filter">' +
 '<input type="button" class="filter" value="Filter">'
),
 render: function() {
 $(this.el).html(this.template());
 return this;
 },
 events: {
 'click .filter': 'filter'
 },
 filter: function() {
 var filter = $('input[type=text]', this.el).val();
 this.trigger('calendar:filter', filter);
 }
});

Here, we create a simple view comprised of form elements. Using the events attribute
of Backbone views, clicks on the "Filter" button will trigger a custom event on the view
itself. In this case, when the event is triggered, it makes sense to associate the event with
data—the text being used to filter appointment titles.

Events should always bubble up the Precipitation chain. Here, this event should be
consumed by the collection view:

Custom Events

130

var CalendarCollection = Backbone.View.extend({
 initialize: function(options) {
 // ...
 this.initialize_filter();
 },
 initialize_filter: function() {
 $(this.el).after('<div id="calendar-filter">');

 var filter = new CalendarFilter({
 el: $('#calendar-filter'),
 collection: this.collection
 });
 filter.render();

 /* Bind to the
 filter.bind('calendar:filter', this.filterCollection, this);
 },
 // ...
});

The filterCollection method can then tell each appointment view to highlight
themselves:

 filterCollection: function(string) {
 this.views.each(function(view) {
 view.highlightIfMatch(string);
 });
 }

Very little code was required thanks to the use of custom events (this time further
customized with event data). Despite the lack of code, we achieve a fairly sophisticated
bit of functionality without needing to make any requests at all of models, collections or
anything else in the the backend.

19.4. Conclusion
Low coupling and high cohesion have long been hallmarks of object oriented coding.
Javascript is not known for its object oriented nature, but Backbone.js makes heavy use of
objects in its Models, Views and Collections. To prevent views from being coupled to one

Custom Events

131

another or, worse yet, coupled to collections and models, we can leverage what Javascript
is well known for: its functional and event-driven nature.

132

Chapter 20. Testing with Jasmine
This recipe gives a few pointers to maximize effectiveness when testing Backbone
applications with Jasmine 1.

20.1. The Problem
A strong test suite is a must for maintaining robust, accurate code. How else can we be
sure that changes do not break existing functionality? In addition to preventing breakages,
testing our Backbone applications can also significantly enhance the cleanliness, and hence
maintainability, of the code.

Even though we may accept that testing is valuable, browser testing is notoriously
difficult. Let’s take a look at some strategies for long term success with a Jasmine 2 test
suite.

20.2. The Solution
There are two kinds of tests that we are going to consider in this recipe: high-level,
integration tests and individual unit tests. Both have their uses and it is inappropriate to use
one or the other exclusively.

Integration tests are great for interacting with Backbone applications across concerns.
When we want to verify that a text field change effects a change in a model, which
ultimately results in a change in a separate view, we are performing an integration test.

Unit tests are what we use to test individual views, collections and models in isolation.
These are generally smaller and less likely to catch regressions. As such, many developers
tend to view them as less important than their higher level brethren. But unit tests are great
at forcing us to view our classes an individual objects with their own API. In practice, if it
is hard writing a test for a class, it is almost certainly because there is too much coupling
between it and other classes.

1http://pivotal.github.com/jasmine/
2More information on getting started with Jasmine can be found in Appendix A, Getting Started with Jasmine

http://pivotal.github.com/jasmine/

Testing with Jasmine

133

To see both types of tests in action, we will walk through developing a simple list of
upcoming appointments in our calendar application.

20.2.1. Ingredients
We are going to make use of the following ingredients in this particular recipe:

• jasmine 3, a relatively small, browser-based Javascript library that facilitates well-
written tests.

• sinon.js 4, which we will use to mimic backend server calls.

• jasmine-jquery 5, which dramatically improves the clarity of Jasmine tests.

20.2.2. Integration Testing with Jasmine
In the list view, if there are three items in the data store, then it stands to reason that three
list items should be shown on the page. Or, in Jasmine-ese:

describe("list view", function() {
 it("lists all appointments", function() {
 expect($("li", "#appointment-list").length).toEqual(3);
 });
});

In this case, we expect a tag with an ID of appointment-list to include a bunch of list
items. The jQuery selector of $("li", "#appointment-list") will yield a wrapped
set of all such list items. We can then examine the length property of the wrapped set to
compare it to our expectation that there are three elements in our list view.

What makes this test an integration test rather than a unit test has nothing to do with our
spec so far. Rather, it is the context in which we are running and checking expectations.
If we had said that the view, given a model with three items, should add three items to the
DOM, we might have been able to use this as a unit test. Instead, we couched this test in
terms of what was saved in the database ("three items in the data store").

To describe that backend store, we must either point our Backbone application at a test
server or stub out calls to the server. To minimize the hassle of building and tearing down
a test database, we will do the latter. We stub out HTTP calls with sinon.js:

Testing with Jasmine

134

describe("list view", function() {
 var server = sinon.fakeServer.create()
 , list = [{}, {}, {}];

 // Respond to any queued AJAX calls
 beforeEach(function() {
 server.respondWith(
 'GET',
 /\/appointments/,
 [200,
 { "Content-Type": "application/json" },
 JSON.stringify(list)]
);

 server.respond();
 });

 it("lists all appointments", function() { /* ... */ });
});

Here, we have most definitely veered into the realm of integration testing. We began with
a test’s expectation describing elements on a web page. Now, we are describing a JSON
response from a backend server.

Stepping through the setup code, we begin by creating a sinon.js server:

describe("list view", function() {
 var server = sinon.fakeServer.create();

 //...
});

Once this faker server is instantiated, it will intercept all outgoing HTTP requests from our
Backbone.js application (or from any other widget on the current page), responding to it as
we desire.

Important

Unless otherwise specified, all requests intercepted by sinon.js will come back as
404 Not Found (more specifically, [404, {}, ""]).

In this case, we respond with the JSON representation of a list of three (empty) documents:

Testing with Jasmine

135

 var list = [{}, {}, {}];

 // Respond to any queued AJAX calls
 beforeEach(function() {
 server.respondWith(
 'GET',
 /\/appointments/,
 [200,
 { "Content-Type": "application/json" },
 JSON.stringify(list)]
);

 server.respond();
 });

Sinon.js supports a very flexible syntax. In this case, we use the form of respondWith()
that accepts three arguments: the HTTP method used (GET), the resource being requested
(any URL containing /appointments) and the response. The response, in turn, consists
of three parts: the HTTP status code (200 OK), any HTTP headers that we wish to include
(Content-Type: application/json) and the body of the response (the JSON describing
a list of three documents).

Tip

Sinon.js supports simpler, more compact syntax, but we prefer the more verbose
version shown here. We are being very explicit about expectations, leaving less
room to be surprised.

After describing respondWith(), we tell the server to respond() immediately
to any pending queries with server.respond(). Up to this point, our earlier
sinon.fakeServer.create() had been merrily intercepting all HTTP activity and
placing it into a queue. The server.respond() call immediately works through the
queue, replying with any respondWith() responses that we have set (or 404s otherwise).

But what HTTP requests do we have so far? The answer is that, as the test is currently
written, we have no requests pending. This is where we attach our Backbone app to the
testing DOM. Initializing the app will generate HTTP requests 6 and the DOM can then be
queried to verify expectations.

6Unless you are bootstrapping your data, in which case a manual fetch() may be needed.

Testing with Jasmine

136

Since the sinon.js server needs to be established before any requests are made and we need
to be able to invoke server.respond() after our Backbone application has issued its
HTTP requests, we need another beforeEach() setup block. This beforeEach() will be
responsible for initializing the Backbone application:

describe("list view", function() {
 var server = sinon.fakeServer.create();

 // Connect the Backbone app to the DOM
 beforeEach(function() { /* Backbone initialization */ });

 // Respond to any queued AJAX calls
 beforeEach(function() { /* sinon respondWith */ });

 it("lists all appointments", function() {
 expect($("li", "#appointment-list").length).toEqual(3);
 });
});

What does "Backbone initialization" entail? Mercifully, not much:

 // Connect the Backbone app to the DOM
 beforeEach(function() {
 window.calendar = new Cal($('#calendar'));
 });

If the test page does not already have a #calendar element, it is easy enough to add:

 // Connect the Backbone app to the DOM
 beforeEach(function() {
 if ($('#calendar').length == 0)
 $('body').append('<div id="calendar"/>');
 window.calendar = new Cal($('#calendar'));
 });

With all of the setup out of the way, we are finally ready to write the View code to
make the spec pass. Despite all of the setup, our core behavior remains simple. We
want three appointments to show up on the list (expect($("li", "#appointment-
list").length).toEqual(3)). A smallish view like the following will do the trick:

Testing with Jasmine

137

var CalendarList = Backbone.View.extend({
 initialize: function(options) {
 options.collection.bind('reset', this.render, this);
 },
 render: function() {
 $(this.el).html(
 '<h2>Appointment List</h2>' +
 '<ol id="appointment-list">' +
 this.collection.reduce(function(memo, appointment) {
 return memo + '';
 }, "") +
 ''

);
 return this;
 }
});

IMPORTANT

Using a tool like sinon.js to stub out the backend can be dangerous if the backend API
is undergoing rapid change. It is quite easy to get into a situation where the backend
undergoes a breaking change, but all of the tests continue to pass. The test code would still
serve up the old JSON API, which passes when run against old code.

In practice, this is not as fearsome as it might seem at first. First, most API changes are
non-breaking (adding an attribute or two to JSON). Second, breaking changes usually go
hand-in-hand with major front-end changes, which will necessitate test changes anyway.
Thirdly, smoke tests of features are normally going to catch these kinds of errors.

Still not convinced? Good, paranoia is a good character trait to have when testing. If you
want to test full stack, then running your tests against a Jasmine server (from the Jasmine
Ruby gem) can allow you to run tests against Backbone code hitting a real test server.
This, however, comes at the added expense of maintaining code to build and tear down the
test server.

In addition to sinon.js, the other invaluable tool for effective testing with Jasmine is
jasmine-jquery. This tool adds several methods to jasmine that are based on the jQuery
library. These methods are largely dedicated to making our lives easier by making Jasmine
specs more readable—both in the spec code itself and the resultant output.

Testing with Jasmine

138

Recall that we made our spec pass by adding empty list items. To verify that the list items
have the text that we expect, we will make use of the jasmine-jquery toHaveText()
matcher. To match text in the list view, we provide details for the document list:

describe("list view", function() {
 var server = sinon.fakeServer.create()
 , list = [
 {"title": "Appt 001", "date": "2011-10-01"},
 {"title": "Appt 002", "date": "2011-11-25"},
 {"title": "Appt 003", "date": "2011-12-31"}
];

 it("displays appointment titles", function() {
 expect($('#appointment-list')).toHaveText(/Appt 001/);
 });
});

If we cared about the order in which our Backbone application displays the appointments,
we might write another test ensuring that the first appointment in the DOM is from
October. Here, it is sufficient to test that the #appointment-list element contains the
expected text: "Appt 001".

It may seem overkill to pull in an entire testing library for something as simple as
toHaveText(). To be sure, we could have asked #appointment-list for its text()
and then used a regular expression to match for the appointment title. The trouble with
that approach is twofold. First, the intent of the test is not as clear, hidden behind all of
that jQuery code. Second, we are just as likely to end up debugging the test as we are our
application.

Jasmine-jquery is a huge win. Do not try to test without it.

20.2.3. Unit Testing
Unit tests, those tests that exercise behavior of individual components of an application,
are very similar in structure to integration tests. In fact, it is easy to get the two confused.
We generally like to follow the convention of putting the various tests into separate sub-
directories of a top-level specs' directory. Typically, these sub-directories
are named: `integration, models, collections, and views (the latter three all
holding unit tests).

Testing with Jasmine

139

One way of thinking about unit tests is that we are asking how they will behave in the
presence of a thing that acts like a model, view or a collection. For instance, if we wanted
to test our appointment view in isolation, we might use a model-like thing on which the
appointment view can operate:

describe("Calendar.Views.Appointment", function() {
 var el = $('<div></div>')
 , appointment = {
 title: 'Title Foo',
 description: 'Description bar.'
 }
 , model = {
 toJSON: function() {return appointment;}
 };

 it("shows the title", function() {
 var ViewClass = Calendar.Views.Appointment
 , view = new ViewClass({model: model, el: el});

 view.render();
 expect($(el)).toHaveText(/Title Foo/);
 });
});

Here, our "model" defines an object literal with a single attribute: a function that answers
to toJSON() calls.

This particular test is not all that exciting. We have succeeded only in verifying that the
template method works:

Testing with Jasmine

140

var Calendar = {
 Views: {}
};

Calendar.Views.Appointment = Backbone.View.extend({
 template: _.template(
 '' +
 ' {{title}}' +
 ' X' +
 ''
),
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 }
});

Unit tests are more helpful in Backbone applications when verifying callbacks. For
example, if we click on the title of an appointment, we might expect that the appointment
is "activated" on the page (e.g. it now has a CSS class applied for highlighting the
selection). The simplest way to accomplish this is to check that the element has the
"active" class enabled after a click. A more precise way to check the behavior is to verify
that the makeActive() callback is invoked in response to the click event. For doing
something like that, we use spies:

Testing with Jasmine

141

describe("Views.Appointment", function() {
 var el = $('<div></div>')
 , appointment = { /*... */ }
 , model = { /*... */ };

 it("shows the title", function() { /*... */ });

 it("makes the view active when clicked", function() {
 var ViewClass = Calendar.Views.Appointment
 , view = new ViewClass({model: model, el: el});

 view.render();

 // Spy on the makeActive method
 sinon.spy(view, 'makeActive');

 // Simulate a click on the appointment
 $('.title', el).click();

 expect(view.makeActive.calledOnce).toBeTruthy();
 });
});

That is quite small and easy to read, but significantly helps to ease some of the worry of
"callback hell" in Backbone applications. We are now 100% certain that, whenever the
appointment is clicked, it will become active in the UI.

Trying to do something like this in an integration test would have been a morass of setup
and jQuery selectors that find the right appointment. Worst of all, we would have no way
to be certain that the appointment becomes active in response to the click event or from a
side-effect of some other event (e.g. a model event).

Tip

Spies in sinon.js are a little nicer than the built-in Jasmine spies, which is why we
use them here.

Testing with Jasmine

142

20.3. Conclusion
Simple Backbone applications do not need tests. After writing a tutorial application or
our first, simple application, it is tempting to think that we can get away without tests for
bigger Backbone applications. As with any codebase of significant proportions, this is
inevitably a mistake as obvious use-cases are broken when new functionality is added.
A solid test suite goes a long way toward mitigating such a situation. With the two types
of tests described here, integration and unit, we should be well prepared to weather the
growth of even the most complex Backbone applications.

143

Appendix A. Getting Started with
Jasmine

In Chapter 20, Testing with Jasmine, we discussed successful strategies for testing
Backbone applications with Jasmine 1. Here we present a brief introduction to Jasmine
itself, with an eye toward testing Backbone code.

A.1. Your First Jasmine Test
Jasmine tests are written in Javascript and look something like:

describe("appointments", function() {
 it("populates the calendar with appointments", function() {
 expect($('#' + fifteenth)).toHaveText(/Get Funky/);
 });
});

In this test, we have a bunch of appointments that have been attached to our calendar
application. One of them indicates an appointment to get on the funk on the fifteenth of the
month 2. If this test were passing, is might look something like:

1http://pivotal.github.com/jasmine/
2The toHaveText() matcher comes from the jquery-jasmine plugin [https://github.com/velesin/jasmine-jquery]

http://pivotal.github.com/jasmine/
https://github.com/velesin/jasmine-jquery
https://github.com/velesin/jasmine-jquery

Getting Started with Jasmine

144

As can been seen, Jasmine tests are evaluated in a browser 3. Looking at those Jasmine
results, we can get a decent idea of what Jasmine means when it claims to facilitate BDD.
Specifically, the output of the tests almost reads like a specification.

From top to bottom, we are talking about a Calendar Backbone application. In that
calendar application, we expect that a collection of appointments will populate the
calendar with UI representations of themselves.

We are getting ahead of ourselves of course. Since we want to be counted among the cool
kids and/or hipsters of the programming world, we want to drive the implementation of
this feature via our test. Without an appointment view class, our test fails:

It fails because our Appointment view does not actually do anything:

var Appointment = Backbone.View.extend({});

It is a Backbone view, so it will respond to render() calls—but it will not actually render
anything. It has an el property that can be inserted into the DOM, but it is an empty
<div>. So, of course, our test fails.

3At the time of this writing Firefox is the browser that works best with Jasmine

Getting Started with Jasmine

145

If this were a book on BDD, we might take you through the steps of demonstrating simple
tests that get something displayed. Then, we could write a second test that verifies that
information is coming from our collection rather than being hard-coded to allow the first
test to pass. But, since this is a Backbone book, let’s skip ahead to what is necessary to
make this test pass with data from the collection:

var Appointment = Backbone.View.extend({
 template: _.template(
 '' +
 ' {{title}}' +
 ' X' +
 ''
),
 render: function() {
 $(this.el).html(this.template(this.model.toJSON()));
 return this;
 }
});

Our collection view has ultimate responsibility for inserting this individual appointment
View into the DOM at the correct location. All we have to do is ensure that the view will
include the model’s title.

Done and done thanks to our view class. Now we have legitimately achieved our passing
test:

Getting Started with Jasmine

146

Important

Even if you are not adhering to the principals of BDD, you should always ensure
that removing code makes tests fail. If you remove code and the test still passes,
chances are you are not testing what you think you are testing. Actually, strike that,
if you remove code and your tests still pass, then your test is worthless.

A.2. Jasmine Standalone
When first getting started with a Backbone / Jasmine test suite, the quick and dirty thing
to do is "Jasmine Standalone". This involves pointing our browser at a single web page
on the local filesystem. For instance, if we are building our application in $HOME/repos/
calendar, then we would want to load our tests at file:///home/dafunk/repos/
calendar/spec/SpecRunner.html.

The contents of the spec runner looks something like:

<head>
 <!-- Jasmine files -->
 ...

 <!-- Library files -->
 ...

 <!-- Test helpers -->
 ...

 <!-- Include spec files ... -->
 ...

 <!-- Include source files ... -->
 ...

 <!-- Initialize Jasmine env -->
 <script type="text/javascript">
 (function() {
 // ...
 })();
 </script>
</head>

Getting Started with Jasmine

147

Since this test is file-based, all of those sections need to include references to other files on
the file system. For example, the jasmine files would be linked in as:

<!-- Jasmine files -->
<script type="text/javascript"
 src="lib/jasmine-1.1.0/jasmine.js"></script>
<script type="text/javascript"
 src="lib/jasmine-1.1.0/jasmine-html.js"></script>

The specs themselves would be linked in as:

<!-- include spec files here... -->
<script type="text/javascript"
 src="CalendarSpec.js"></script>

<!-- include source files here... -->
<script type="text/javascript"
 src="../public/javascripts/Calendar.js"></script>

The specs and testing libraries should generally be kept in a separate directory from
the actual code. Here, we have the Jasmine test libraries and the actual test file in the
same directory while the application code being tested is in a separate public top-
level directory (see below for a more detailed breakdown of how these files might be
organized).

As for the spec itself, it should look something like:

describe("Calendar", function() {
 describe("the page title", function() {
 it("contains the current month", function() {
 /* Code verifying the title */
 });
 });
});

The first, outermost spec describes the highest level concept being tested—here the
calendar Backbone application. Inside that, we describe the specific aspect of the
application being tested—in this case, the title of the page. Finally, we have one or more
blocks that enumerate the expected behavior of the code.

An it() block uses Jasmine "matchers" to describe the expected behavior. To describe the
expectation that the title should contain the ISO 8601 date, we can write:

Getting Started with Jasmine

148

 describe("the page title", function() {
 it("contains the current month", function() {
 expect($('h1')).toHaveText(/2011-11/);
 });
 });

At first, this will fail with an error along the lines of:

But we can make our spec pass by implementing a Backbone title view:

var TitleView = Backbone.View.extend({
 tagName: 'span',
 initialize: function(options) {
 options.collection.bind('calendar:change:date', this.render, this);

 $('span.year-and-month', 'h1').
 replaceWith(this.el);
 },
 render: function() {
 $(this.el).html(' (' + this.collection.getDate() + ') ');
 }
});

With that, we have our passing test:

Getting Started with Jasmine

149

There are definitely times that standalone Jasmine tests are not sufficient, which is what
the next section discusses.

A.3. Jasmine (Ruby) Server
If your application grows, it will soon become too large for standalone Jasmine. The
standalone approach lacks the capability to run under a continuous integration server.
Standalone also make network requests very difficult. This is where the jasmine ruby gem
steps into the picture.

Tip

The jasmine server is implemented in Ruby, so you will need that installed on your
system. The best resource for this is the "Downloads" link on http://ruby-lang.org.

You will also need the rubygems library. Despite being universal in the Ruby
community, the rubygems library is not bundled with Ruby. You can find
instructions for installing rubygems at: http://docs.rubygems.org/read/chapter/3

With ruby and rubygems installed, you are ready to install the jasmine server. Per
the jasmine server instructions [https://github.com/pivotal/jasmine/wiki/A-ruby-
project:], installation is accomplished via two commands:

$ gem install jasmine
$ jasmine init

At this point the server can be run as:

$ rake jasmine

http://ruby-lang.org
http://docs.rubygems.org/read/chapter/3
https://github.com/pivotal/jasmine/wiki/A-ruby-project:
https://github.com/pivotal/jasmine/wiki/A-ruby-project:
https://github.com/pivotal/jasmine/wiki/A-ruby-project:

Getting Started with Jasmine

150

There is a fair bit of configuration required in the Jasmine server. After installation
of the server (and assuming that we already have the Backbone application started in
Calendar.js), our directory structure might include the following:

...
public
javascripts
backbone.js
Calendar.js
jquery.min.js
jquery-ui.min.js
underscore.js
spec
javascripts
helpers
jasmine-jquery.js
sinon.js
SpecHelper.js
CalendarSpec.js
support
jasmine_config.rb
jasmine_runner.rb
jasmine.yml
...

Libraries used by the actual application (our Backbone app and various supporting
libraries) are stored under public/javascripts. Libraries only used for testing are stored
along with the rest of the testing material under the spec/javascripts/ directory.

Configuration is done almost exclusively in the jasmine.yml configuration file. For
the most part, the defaults are sound. The exception for Backbone applications is the
src_files directive. By default, this loads javascript source files (the things under
public/javascripts for us) in alphabetical order. This is disastrous for a Backbone
application because it means that underscore.js would be loaded after backbone.js
(ditto jquery.js).

To work around this, we need to explicitly layout our library files in the same order as they
would be in the web page. Something along the lines of:

Getting Started with Jasmine

151

src_files:
 - public/javascripts/jquery.min.js
 - public/javascripts/underscore.js
 - public/javascripts/backbone.js
 - public/javascripts/**/*.js

The last line instructs Jasmine to slurp up everything (Jasmine is smart enough to ignore
anything it has already loaded).

With that, we can run our test suite—either locally or under a continuous integration server
—by issuing the rake jasmine:ci command:

calendar git:(jasmine) rake jasmine:ci
 Waiting for jasmine server on 58538...
 Waiting for jasmine server on 58538...
 Waiting for jasmine server on 58538...
 [2011-11-19 23:38:14] INFO WEBrick 1.3.1
 [2011-11-19 23:38:14] INFO ruby 1.9.2 (2011-07-09) [x86_64-linux]
 [2011-11-19 23:38:14] WARN TCPServer Error: Address already in use - bind(2)
 [2011-11-19 23:38:14] INFO WEBrick::HTTPServer#start: pid=6921 port=58538
 Waiting for jasmine server on 58538...
 jasmine server started.
 Waiting for suite to finish in browser ...

 Finished in 1.17 seconds
 9 examples, 0 failures

It is wonderful to have a reproducible test environment for all team members as well as
for our continuous integration server. This will save hours upon hours of tracking down
idiosyncrasies between different environments.

The other benefit of running the jasmine server is that it is a server. To see this in action,
we can start the server with the rake jasmine (omitting the :ci from the continuous
integration version of the command):

Getting Started with Jasmine

152

calendar git:(jasmine) rake jasmine
your tests are here:
 http://localhost:8888/

 [2011-11-19 23:58:02] INFO WEBrick 1.3.1
 [2011-11-19 23:58:02] INFO ruby 1.9.2 (2011-07-09) [x86_64-linux]
 [2011-11-19 23:58:02] WARN TCPServer Error: Address already in use - bind(2)
 [2011-11-19 23:58:02] INFO WEBrick::HTTPServer#start: pid=7077 port=8888

And, as the output instructs us, we can find our specs at http://localhost:8888/. At this
point, nothing prevents us from making real HTTP request of an application server also
listening on localhost. We are no longer restricted to simulating browser interaction. We
can test the real thing.

A.3.1. Continuous Integration
Tests are only useful when run on each commit. Unless you have the kind of team that is
intensely committed to manually running the Jasmine suite before each commit, you will
need a continuous integration server.

For ruby shops, the jasmine gem includes rake 4 commands that can be used in continuous
integration. Instead of running the server manually with rake jasmine, a continuous
integration server would invoke the rake jasmine:ci command. The exit status and
output from this command work nicely with most continuous integration environments.

The one caveat with using the jasmine gem for continuous integration is that the jasmine
gem needs to start up an actual web browser to execute the tests. This can be difficult
to configure. There are headless alternatives to the jasmine gem. The jasmine-headless-
webkit 5 is a good starting place. The PhantomJS 6 javascript environment is another.
The latter even includes a run-jasmine.js script which is easily adaptable for use in a
continuous integration environment. Of the two, PhantomJS is currently better suited for
Backbone development, but both are undergoing active development.

4Rake is the ruby equivalent of the venerable Unix command, make
5http://johnbintz.github.com/jasmine-headless-webkit/
6http://phantomjs.org

http://localhost:8888/
http://johnbintz.github.com/jasmine-headless-webkit/
http://phantomjs.org

	Recipes with Backbone
	Table of Contents
	History
	Introduction
	1. Who Should Read this Book
	2. Contact Us
	3. How this Book is Organized

	Chapter 1. Writing Client Side Apps (Without Backbone)
	1.1. Working with Dates

	Chapter 2. Writing Backbone Applications
	2.1. Converting to Backbone.js
	2.2. Models
	2.3. Views
	2.4. Additional Reading
	2.5. Conclusion

	Chapter 3. Namespacing
	3.1. The Problem
	3.2. The Solution
	3.2.1. Alternative #1: Global Object Namespace
	3.2.2. Alternative #2: Javascript Function Constructor

	3.3. Conclusion

	Chapter 4. Organizing with Require.js
	4.1. The Problem
	4.2. The Solution
	4.2.1. Requiring Other Things
	4.2.2. Optimization / Asset Packaging

	4.3. Conclusion

	Chapter 5. View Templates with Underscore.js
	5.1. The Problem
	5.2. The Solution
	5.2.1. Avoid Script Tag Templates
	5.2.2. ERB Sucks {{ Use Mustache }}
	5.2.3. Avoid Evaluation

	5.3. Conclusion

	Chapter 6. Instantiated View
	6.1. Introduction
	6.2. The Problem
	6.3. The Solution
	6.4. Conclusion

	Chapter 7. Collection View
	7.1. Introduction
	7.2. The Problem
	7.3. The Solution
	7.4. Conclusion

	Chapter 8. View Signature
	8.1. Introduction
	8.2. The Problem
	8.3. The Solution
	8.3.1. What is a Signature?
	8.3.2. Signature Module
	8.3.3. A Simple Example: MD5
	8.3.4. A Fast Example: Model Data

	Chapter 9. Fill-In Rendering
	9.1. Introduction
	9.2. The Problem
	9.3. The Solution
	9.4. A Quick Refactor
	9.5. Conclusion

	Chapter 10. Actions and Animations
	10.1. Introduction
	10.2. The Problem
	10.3. The Solution
	10.4. Conclusion

	Chapter 11. Reduced Models and Collections
	11.1. Introduction
	11.2. The Problem
	11.3. The Solution
	11.3.1. Simple Solution: A View
	11.3.2. Better Solution: A Reduced Collection

	11.4. Conclusion

	Chapter 12. Non-REST Models
	12.1. Introduction
	12.2. The Problem
	12.3. The Solution
	12.3.1. Special Action
	12.3.2. Special Persistence Layer

	12.4. Conclusion

	Chapter 13. Changes Feed
	13.1. Introduction
	13.2. The Problem
	13.3. Changes feed on a Collection
	13.4. Conclusion

	Chapter 14. Pagination and Search
	14.1. Introduction
	14.2. The Problem
	14.3. The Solution
	14.3.1. Search
	14.3.2. Pagination

	14.4. Conclusion

	Chapter 15. Constructor Route
	15.1. The Problem
	15.1.1. A simple specific route

	15.2. The Solution
	15.3. Conclusion

	Chapter 16. Router Redirection
	16.1. Introduction
	16.2. The Problem
	16.3. The Solution
	16.3.1. Default Routes

	16.4. Conclusion

	Chapter 17. Evented Routers
	17.1. Introduction
	17.2. The Problem
	17.3. The Solution
	17.4. Conclusion

	Chapter 18. Object References in Backbone
	18.1. Precipitation Pattern
	18.2. Dependency Injection
	18.3. Conclusion

	Chapter 19. Custom Events
	19.1. Introduction
	19.2. The Problem
	19.3. The Solution
	19.3.1. Application Triggered Events
	19.3.2. User Triggered Events

	19.4. Conclusion

	Chapter 20. Testing with Jasmine
	20.1. The Problem
	20.2. The Solution
	20.2.1. Ingredients
	20.2.2. Integration Testing with Jasmine
	20.2.3. Unit Testing

	20.3. Conclusion

	Appendix A. Getting Started with Jasmine
	A.1. Your First Jasmine Test
	A.2. Jasmine Standalone
	A.3. Jasmine (Ruby) Server
	A.3.1. Continuous Integration

