BACKBONE

Strategies to accelerate development
with Backbone.

Nick Gauthier & Chris Strom



Recipes with Backbone
Nick Gauthier and Chris Strom



Recipes with Backbone
Nick Gauthier and Chris Strom




Table of Contents

L T (] YR Vii
100 [FTox 1 oo P viii
1. Who Should Read thiS BOOK .........cceeiiiiiiieeeeeee e viii

A O] 4 | = o: B O LS PRSP RURPR IX

3. How this BOOK IS Organized ...........coceieeiieiiiiesiee e IX

1. Writing Client Side Apps (Without Backbone) ...........ccceciieiiniinieniee e 1
1.1. WOrking With DEES ........cccueiieieiiiriesie ettt s nee e 1

2. Writing Backbone APPIICALIONS ........cccviieiienieeiesiesie e 6
2.1. Converting to BaCkbDONE|S .....couoiiiiiieceee e 7

FZ A |V oo = 1 TSR 10

2.3 VIBIS oottt sttt ettt et e s bt e b e et e s a e e be et e e neenbe et e eneenreenenneens 11

2.4, Additional REAAING .......coiveeiieiieieeiesie ettt sre e 18

P22 T O g Tox 11 o] o PSR 18

O AT 7= o 1 o PSPPSR 19
3.1 TRE ProBIEM ...t 19

3.2, THE SOIULION ...ttt sttt neeneas 19
3.2.1. Alternative #1: Global Object Namespace .........cocceveevereereenieseeseeenns 19

3.2.2. Alternative #2: Javascript Function Constructor ............ccccceveeeveeieeneenne 21

GG T O g Tox 11 o] o PSS 27

4. Organizing With REQUITE.JS .....eeeiieieiieie sttt 28
O I I S 0] o= o ST 28

N I 4 TSI o [ 11 o o PSS 28
4.2.1. Requiring Other ThiNgS .....ccccoiieiineeeee e 34

4.2.2. Optimization / Asset Packaging ........cccoeereeirieenienee e 35

VG T 0] o 11 Lo o P SRPRRSR 38

5. View TemplateS With UNAErSCOrE.S ......coovieeririeiierie et 39
5.1, The ProbIEM ...t 39

5.2, THE SOIULION ...ttt st enneeneas 39
5.2.1. Avoid Script Tag TeMPIALES .......cccoeeiireereeie e 43

5.2.2. ERB Sucks {{ Use MUStaChe }} ....ooeiiiiieeeeee e 45

5.2.3. AVOIA EVAIUSLTON ....ceoiiiiieieeesee e 47

ETC T O g Tox 11 o] o PSSR 48

6. INSLANLIAEEA VIBW ...ttt et e e st esne et esneenes 49
(G300 I 1 g1 0o (1o i o] o ISP 49




Recipes with Backbone

(S22 I 4 ST = (] L= 1 IR 49

(SR T I ST 0 1T 1 I 50

LS O] o 11" oo 51

FA S0 11=w (Lo g IV AT A 52
4% T 1 g1 0 18 [ox £ o o [ 52

A2 N 4TS 3 (0o = o T 52

G T I ¢TSI o U o o 53

A o v [ V1= o o U 57

Y A= YV o g (1 [ TS 58
S0 1 1o o [0 Tox (o o T 58

T2 I 2 ST = (] L= o IR 58

TR T I £ ST 0 11 11 IR 58
8.3.1. Whatl 1S @ SIQNALUIE? .....ocueeceeeieeee et ee e te ettt esne e 59

8.3.2. SIgNAture MOUIE ........coeeeeeeee e 59

8.3.3. A Simple Example: MD5 ........ocoeiiee e 60

8.3.4. A Fast Example: Model Data .........ccceveevieeieiiesece e 61

9. Fill-IN RENUENTNG ..cveeeieceeee ettt e reeneeneenneennas 63
LS I 1 1o o [0 Tox (o o T 63

LS T2 I 2 ST = (] L= o I 63

LS TR T I £ ST 0 1T 11 I 64

9.4. A QUICK REFACLON ......eveiiieiieectie ettt ere e s er e s are e 65

LS ST O] Tox 111" oo [ 66

10. ACtions and ANIMEALIONS ......cccveeiirieeiirieeeiree e eteeseeeeseresssbeeessbeessbeessbeessbeessbesssbesens 67
0 T 1 g o (0T (o T 67

O T I T= T = (0] o] = o o T 67
O TR T I T TS0 [ V11 T 68

0 I @0 T Tox 11 o) [ 70

11. Reduced Models and COIIECLIONS .......cceeeiveieiiee et 71
IO R 1 1 (o (0T (o 71
7 I T= T = 0] o] = o o T 71
R T I TS o [V 1o 72
11.3.1. SImple SOIULION: A VIBW ...coviceeceeececeee et 72

11.3.2. Better Solution: A Reduced Collection ..........cccoceeveeeevciee e, 73

8 S 0T Tox 11 o) [ 76

12. NON-REST MOGEIS ...oooietiiicie ettt sbe e e sabe e s snreas 78
2 I 1 g 1 (o (U (o T 78




Recipes with Backbone

2 I T = (0] o] = o o T 78
T I TS o (V11 78
12.3.1. SPECIAl ACHION ...ttt 78

12.3.2. Special PErSIStENCE LAYES ....c.occveeeeeceece ettt 80

2 o0 To: 11 o) [ 82

13. ChangES FEEM ......eeeieceieeeece ettt ettt e e e e st e e e e e e s reetesnnesneenneas 83
G 700 1 g 1 (oo (U (o T 83

G T I T = (0] o] = o o T 83
13.3. Changes feed 0n @ COllECLION ........ccceeveeiiieieceece e 83

G T @0 T To: 11 o) [ 86

14. Pagination and SEarCh ..o s 88
2 1 g o (U (o o 88
R I T = (0] o] = o o T 88
T I TS o [V 1o 88
T TS < o o 88

I T == o ] = 4o SR 90

S @0 T To: 11 = Lo [ 94

15, CONSITUCIOr ROULE .....cuviiiiiiiiiii ittt e s e s rre e e e s e s s s e saabbr e e e e e e e e e s saansrraeeeeaens 95
T I T= T = 0] o] = o o T 95
15.2.1. A SIMple SPECITIC FOULE ......veeeeeeeeeeeie e 95

T I TS0 (V110 T 98
TS T 0T To: 11 = T ) o [ U 102

ST o U1 (= g == [ (= i (0] o O 103
T 1 g o (0T (o o T 103
ST I TN = (0] o] = o T 103
ST T I T TS o 11110 T 103
16.3.1. DEfAUIt ROULES ......coeevieiiiiie ettt ettt 111

ST 0T To: 11 Lo [ 112

R = 1= o [ (0 U1 (= 113
0 1 g o (0T (o o T 113
A I T = (0] o] = o o T 113
T I T TS o 1110 T 114
A o T To: 11 o) [ U 117

18. Object References in BackbOne ...........coovcveiieiiceceese e 118
18.1. PreCipitation Pattern ..........ccceieieeiierieeie e ee e 120
18.2. Dependency TNJECLION .........ccceceeieeieeiiese et 121




Recipes with Backbone

ST T o g o 11T o o S 124

19. CUSIOM EVENTS ...ttt sbe s b e s be e snbe e e snnee s 125
S 50 R 1 11 0o 1 Tox 1 oo SRS 125
19.2. The ProBIEM ..ot 125
19.3. THE SOIULION ....covieiieiieeeee ettt a e e nnin 125
19.3.1. Application Triggered EVENES ........cccecceeveevecieceese e 126

19.3.2. User Triggered EVENLS .......cccceieeieee e 129

S R o o 11T o o 130

20. Testing With JASIMINE ........ccciiiiiice et ste e e e nne e 132
20.1. ThE ProblemM ...t 132
P02 I =T o 11 o o S 132
P02 B 1| = [ 1= £ 133

20.2.2. Integration Testing With JaSMINe .........cccovveieveeveece e 133

20.2.3. UNIt TESHNG .oveiveriieiiriieieiesie ettt st e neeas 138

P20 IR I @0 o 1101 o o S 142

A. Getting Started With JASMINE .......ccoviiiiieceee e 143
AL Your First Jasming TESE ....ccuvcoeieeiiee et 143
A.2. JaSMIiNe StANAIONE ......cc.eeeiieeeieee e nre s 146
A.3. Jasmine (RUDY) SEIVEN .......ccvoiiieece ettt 149
A.3.1. ContinUOUS INLEJIalioN ........ccceieeiieeieieeie e sre e nneas 152

Vi



History

2011-09-30: Initial apharelease

» 2011-10-06: New recipes: "Non-REST Model" and "Reduced Models and Collections’

» 2011-10-19: New recipes: "Constructor Route" and "Router Redirection”. Minor copy
edits.

» 2011-10-24: New recipes. "Changes Feed" and "Object Referencesin Backbone'.

» 2011-10-31: Beta. New recipes: "Underscore Templates', "Pagination and Search”,
"Evented Routes', and "Custom Events'. Converted all CoffeeScript code samplesto
Javascript. Many corrections (thanks to Ben Morris, Geoffrey Grosenbach).

» 2011-11-30: 1.0 New intro chapters and an appendix on testing with Jasmine. Many,
many corrections.

» 2011-12-02: Fix a couple of typosin the introduction chapters (thanksto Luigi
Montanez).

» 2011-12-07: Moretypos/ grammar corrections (thanks Martin Harrigan, "jdkealy", and
Bob Spryn).

» 2011-12-31: Ensure that code blocks do not split across pages. Tweak to better support
Kindle Fire. Additional typo fixes. Much thanks to David Mosher and "simax" for
pointing these out.

» 2012-01-02: New Require.js recipe. Sample code fix (de-ruby-ify some Javascript)—
thanks to "simax" for identifying the problem.

» 2012-01-18: New Jasmine strategies recipe. Typo fix in the underscore recipe—thanks
"Hudon689" for the keen eye.

Vi



Introduction

During its brief existence, Backbone.js has enjoyed tremendous popul arity from the

web development community. As one of the first "micro-frameworks" to hit the scene,

it captured the hearts and minds of developers that had previously been struggling with
much heavier frameworks—many of which had alearning curve similar to learning a new
programming language.

A significant appeal of Backbone is how small it is. A seasoned developer can pick

it up in aday and start cranking out robust code in no time. Its parent organization,
DocumentCloud *, has outstandi ng documentation and has collected a nice set of tutorial
applications. Thislow barrier to entry coupled with significant power is compelling.

Another appeal is how very agnostic Backbone is about, well... everything. It makes

no assumptions about templating libraries that will populate the Ul of the application. It
defaults to persisting data over aREST layer, but even that is easy to swap out. The power
afforded by Backbone, comes from the application structure chosen (models, collections of
models, and views) and the convention it describes for different concepts to interact with
each other.

The downside of such asimple and agnostic framework is that it can be easy to take
approaches that end up being less than ideal as time goes by. We know. We have made
these mistakes and have felt the pain of ripping significant chunks of code out so that we
could better |everage the browser, the network or the datastore.

In this book, you will find a collection of the strategies that we have found to be most
effective. We will discuss the situations in which they apply and how our initial attempts at
solving problems common to all Backbone applications failed and why these recipes have
been successful.

1. Who Should Read this Book

This book is not meant as an introduction to Backbone.js. We will provide a quick
introduction, but only enough to provide foundation for many of the recipeslater in

http://www.documentcloud.org/

viii


http://www.documentcloud.org/

Introduction

the book. For a solid introduction to Backbone.js, see the online documentation 2 Itis
excellent. Or better yet, read the source code. It is very approachable Javascript code and
is, as you should come to expect of Backbone.js, self-documented very nicely.

This book also assumes afair level of Javascript knowledge. If you have read " Javascript:
The Good Parts" 3, you should be in good shape. If not, do it—it isasmall book with
excellent discussion of what makes Javascript such a nice language.

2. Contact Us

If you have thoughts or suggestions, we would love to hear from you!

If you find any mistakes or have any suggestions, please do not hesitate

to let us know by adding an item to our TODO list (https://github.com/

reci peswithbackbone/reci peswithbackbone.github.com/issues) or by dropping us aline at
errat a@ eci pesw t hbackbone. com

We will update the mailing list whenever a new version is ready to be downloaded 4 s0
make sure that you are subscribed.

3. How this Book is Organized

We have structured this book so that concepts are introduced from the bottom-up.

We start with a brief introduction to client-side development in the days prior to Backbone
(Chapter 1, Writing Client Sde Apps (Without Backbone)) and then discuss how our

poor application might be better served by Backbone (Chapter 2, Writing Backbone
Applications). These introductory chapters also serve to introduce the sample application
with which we will work through many of the recipes. If you are an experienced
Backbone.js coder, you can safely skip these introductory chapters.

Next come some "fundamentals" recipes. The first two describe different strategies for
Backbone.js organization. Chapter 3, Namespacing, is intended for smaller applications.

2http://documentcl oud.github.com/backbone/
3"Ja\/ascript the Good Parts': http://shop.oreilly.com/product/9780596517748.do
“This book’s mailing list: http://eepurl .com/fqMy2



https://github.com/recipeswithbackbone/recipeswithbackbone.github.com/issues
https://github.com/recipeswithbackbone/recipeswithbackbone.github.com/issues
http://documentcloud.github.com/backbone/
http://shop.oreilly.com/product/9780596517748.do
http://eepurl.com/fqMy2

Introduction

The next, Chapter 4, Organizing with Require.js, introduces the very powerful require.js
library as an effective means for working with larger Backbone.js codebases. Last up

in this section is Chapter 5, View Templates with Underscore.js, which introduces the
surprisingly powerful built-in templating tool.

With the preliminaries out of the way, we dive into Backbone,js view objects, which
iswhere a surprising amount of action takes place. First up is Chapter 6, Instantiated
View, which is useful when views only need to be created once. Next is Chapter 7,
Collection View, which is essential for working with collections. Then we moveinto a
couple of performance optimization recipes: Chapter 8, View Sgnature and Chapter 9,
Fill-In Rendering. We finish up views with alittle eye candy: Chapter 10, Actions and
Animations.

The next section of the book contains recipes for working with models and collections.
First up is an interesting little recipe describing how to work with statistical and
aggregating objects: Chapter 11, Reduced Models and Collections. Following that is
Chapter 12, Non-REST Models, which introduces working with legacy server code (sadly
it is quite useful). Next comes Chapter 13, Changes Feed, which gives some nice tips

on how to make your Backbone applications even more dynamic. Lastly is Chapter 14,
Pagination and Search.

In the routing section of the book, we start off with Chapter 15, Constructor Route, which
describes an interesting little pattern that can significantly decrease the amount of code
required in your Backbone applications. Next comes the Chapter 16, Router Redirection
which serves up some tricks for implementing redirection-like behaviors in Backbone.
Last up is Chapter 17, Evented Routers which similarly discusses strategies for keeping
your routes DRY .

We finish up the book with two recipes that did not quite fit anywhere else, but are definite
must-reads. First is Chapter 18, Object References in Backbone. If you read nothing

elsein this book, read this asit gives a top-down philosophy for building Backbone.js
applications that will be applicable aimost anywhere. We finish up with a discussion of
Chapter 19, Custom Events.

If you are still hungry for more, dig into our appendices where we discuss Appendix A,
Getting Started with Jasmine.

Excited? Let’s get started!




Chapter 1. Writing Client Side Apps
(Without Backbone)

Before jumping into Backbone.js development, let’ s take a stroll through life without it.
Thisis not meant to serve as a straw man argument so that in the end, we can jump up and
say "look how awesome Backbone.jsis!" To be sure, Backbone.jsis awesome, but this
exercise is meant to give you an idea of where Backbone provides structure. Once we have
made it through this exercise, we will be left with a number of questions as to what the
next steps should be. Without backbone, these questions would be left to us to answer.

For most of the book, we are going to be discussing Backbone in relationship to a
Calendaring application. Here, we will try to get a month view up and running using
nothing but server-side code and jQuery. Surely we can do this—our forefathers have been
doing thiskind of thing for dozens of months.

For our purposes, let’ s assume that the server isresponsible for drawing the HTML of the
calendar itself, while the client must make a call to aweb service to load appointment for
that calendar. Sure, thisis aconceit, but it is a conceit born of athousand implementations
in the wild.

1.1. Working with Dates

Thisis not news, but working with dates in Javascript is not pleasant. We will keep it to a
minimum, in part by using the SO 8601 date format 1. 1SO 8601 date/times take the form
of "YYYY-MM-DD HH:MM:SS TZ" 2. The date that the first edition of this book was
published can be represented as "2011-11-30".

The brilliant simplicity of 1SO 8601 is that anyone can read it—even Americans who tend
to represent date in nonsensical order. Thereis no doubt that 2011- 11- 12 represents the

thttp://en.wikipedia.org/wiki/ISO_8601

The official 1SO 8601 representation of a datetime includes a T in between the date and the time

(2011-11- 30T23: 59: 59). We prefer omitting the T to aid in human readability without degrading machine
parsing (2011-11- 30 23: 59: 59)



http://en.wikipedia.org/wiki/ISO_8601

Writing Client Side Apps
(Without Backbone)

12th of November, whereas Americans think that 12/ 11/ 2011 isthe 11th of December,
the civilized world know this to be the 12th day of the 11th month of 2011. Reading dates
when the units increase or decrease from left-to-right just makes sense.

It even makes sense to a machine since, although " 2011- 11- 12" and " 2011- 11- 30"

are strings, they can still be compared by any programming language. Machines simply
compare the two as strings. Since the "2" and "2" are the same, it compares the next two
charactersin the string (both "0"). Eventually, the"3" and "1" are reached in the days of
the month place. Since the character "3" is greater than the character "1", the following
would be true regardless of language: "2011- 11- 30" > "2011-11-12".

Armed with that knowledge, we make the ID element of the table cells 1SO 8601 dates,
corresponding to the date that the cell represents.

<t abl e>
<tr>
<t h>S</t h><t h>M/ t h><t h>T</ t h><t h>W&/ t h>
<t h>T</t h><t h>F</ t h><t h>S</ t h>
</[tr>
<tr>
<td id="2012-01-01"><span cl ass="day- of - mont h" >1</ span></t d>
<td id="2012-01- 02" ><span cl ass="day- of - mont h" >2</ span></t d>
<td id="2012-01-03"><span cl ass="day- of - mont h" >3</ span></t d>
<td id="2012-01- 04" ><span cl ass="day- of - mont h" >4</ span></t d>
<td id="2012-01- 05" ><span cl ass="day- of - mont h" >5</ span></t d>
<td id="2012-01- 06" ><span cl ass="day- of - mont h" >6</ span></t d>
<td id="2012-01-07"><span cl ass="day- of - mont h" >7</ span></t d>
</tr>

<tr><l-- ... --></tr>

<tr><l-- ... --></tr>

<tr><l-- ... --></tr>

<tr><l-- ... --></tr>
</t abl e>

That HTML might generate a calendar that displays something like thisin a browser:




Writing Client Side Apps
(Without Backbone)

So far we have nothing more than a static calendar page. To make things alittle more
interesting, we add a jQuery AJAX request to the backend asking for all appointmentsin
January:

$(function() {
$. get IJSON(' / appoi nt ments', function(data) ({
$. each(data.rows, function(i, rec) { add_apppointnent(rec) });

1),
1),

That request of the/ appoi nt ment s resource will return JSON that includes ar ows
attribute. For each record in the list of rows, we want to add a corresponding appointment
to the the calendar.

{"total rows":2,"offset":0,"rows":|

{"id": “appt-1",

"start Dat e": "2012-01-01",

"title": "Recover from Hangover",

"description": "Hair of the dog that bit you."},
{"id": "appt - 2",

"start Dat e": "2012-01- 02",

"title": "Quit drinking",

"description": "No really, | nmean it this year"}

1}




Writing Client Side Apps
(Without Backbone)

The add_appoi nt ment function need not be anything fancy if we simply want the
appointment to display. Something along the lines of the following will suffice:

functi on add_appoi nt ment (appoi nt mrent) {
var date = appoi ntnent. startDat e,
title = appointnent.title,
descripti on = appoi nt nent. descri pti on;

$('# + date).append(
'<span title=""' + description + '">' +
title +
' </ span>'
)
}

Do you see the SO 8601 trick in there? The st ar t Dat e attribute is represented as an 1SO
8601 date (e.g. "2012-01-01"). The cellsin our calendar <t abl e> aso have |Ds that
correspond to the 1SO 8601 date:

<tr>
<td id="2012-01-01"><span cl ass="day- of - mont h" >1</ span></t d>
<l-- ... -->

</[tr>

Thus, by appending the appointment HTML to $(' # + date'), wearereally appending
to $(' #2012-01-01') or the date cell for New Year’sday. Simple clever 3 en?

Using this strategy, we could fetch 3 years worth of appointments from the backend and
run each through the add_appoi nt nent function. An appointment from New Y ear’s Day
2010 would not be appended to the calendar because there is no calendar table cell with
an ID of $(' #2010- 01- 10" ) . That jQuery selector would produce an empty wrapped set,
which resultsin no change.

The authors have been using a similar technique since the 1900s to great effect. For more
than 10 years, it has been possible to do something like this and we did not need any fancy
Javascript MV C framework.

So why do we need one now?

3as opposed to clever clever which is always abad idea




Writing Client Side Apps
(Without Backbone)

The answer to that question is what comes next. Asin "What comes next in my calendar
application?' Perhaps the user needs to move appointments between dates. Or maybe add
new appointments/ delete old ones. Regardless of what comes next, we are going to need
to answer how. And how is the realm of Backbone,js.

Sure we might continue coming up with clever hacks like the 1SO 8601 trick for our
calendar. But with each clever hack, we risk making the code harder to approach for the
next developer.

How do you future proof? How can you be sure that your approach will be understood by
the next devel oper? How can you know that today’s simple cleverness will still be easy to
read in 3 months?

The answer isto not choose. Rather, |et Backbone show you the way.

And that is where we begin in the next chapter...




Chapter 2. Writing Backbone
Applications

Having gone through the exercise of loading appointments over AJAX, a picture begins
to form of how it will evolve. There will be navigation buttons to move back and forth
between months. Controls will need to be added to switch between month, week, and
day views. At some point, our calendar will need to create, update, move, and delete
appointments on the calendar. To compete in the market, it will even need to support
"fancy" features like scheduling recurring appointments and appoi ntments on the second
Tuesday of every month.

And throughout the evolution of such features, our calendar application needsto remain
nice and snappy. It also needsto be able to store appointments in the backend quickly—
again without impacting the performance of the Ul.

Changing views from month to week to day does not seem al that hard. We could
include hidden <di v> tags to hold those views, showing them when the user chooses the
appropriate control:

<di v id="cal endar">
<di v cl ass="nont h-vi ew'>

<l-- ... -->

</div>

<di v cl ass="week-vi ew' styl e="di spl ay: none">
<l-- ... -->

</div>

<di v cl ass="day-vi ew' style="displ ay: none" >
<l-- ... -->

</div>

</div>

Now, when updates are made, we need to make sure that they apply to each of the three
views. It will not do to create an appointment in the month view, only to have it disappear
when switching to the day view.

Instead of updating three different views each time a change occurs, perhapsit would
be better to store a copy of all appointmentsin aglobal variable. That would allow usto
switch quickly between views without needing to make calls to the server each time.




Writing Backbone
Applications

But how will the server get notified when appointments change? How does that global data
structure coordinate updates with the server for persistent storage? How do edit / change
dialogs coordinate changes with this local store, the server and the current view?

Being developers, we are aready starting to envision strategies for handling all this.
Coming up with an API to manipulate that local data store. Maybe broadcast some global
custom events when changes occur. Ooh! Maybe an API that wraps around the callsto the
server...

Yes, thereisalot that we can do here. We could probably solve all of these problems and
others that we have not even thought up yet, given enough time. Some of us might even
come up with an almost elegant solution.

But the entire time that we are doing all of this, we are not focusing on our application. We
are building infrastructure, not value for our customers.

Instead, let’s use Backbone,js...

2.1. Converting to Backbone.js

To collect appointments from the server in our vanilla AJAX solution, we are making a
jQuery get JsON() call:

$(function() {
$. get JSON(' / appoi ntments', function(data) {
$. each(data.rows, function(i, rec) { add_appoi ntment(rec) });

1),
1),

Asis, this fetches the data from the server, displaysit, and then promptly forgets about it.

In a Backbone application, the retrieval of alist of objectsisawaysretained locally in
a Collection. Once stored, Views can be attached to display the individual objectsin a
collection. They are not rendered immediately by the Collection as we did in our vanilla
AJAX solution. Rather, views spring into existence when the application is started or in
response to events.

The reason that Backbone uses a stand-alone Collection like thisis so that the Collection
can be used as something of ajunction for events. If an individual object in the collection




Writing Backbone
Applications

changes, it can generate alittle event, which will bubble up through the collection and be
passed along to any interested observers.

For instance, if an appointment is removed from the Collection, it will generate a"remove"
event. The view responsible for displaying this particular appointment can then remove
itself from the page. Just as importantly, summary views (e.g. number of eventsthis
month) can also listen for the "remove" event, using it as asignal to update themselves.

To actually define one of these Collections, we need to use the built-in ext end method to
extend Backbone. Col | ect i on into something specific to our appointment:

var Appoi nt nents = Backbone. Col | ecti on. ext end({
nodel : Appoi nt ment ,
url: '/appointnents'

1),

That defines an Appoi nt nent s class, which will retrieve lists of events from the same
server on which the Backbone application originated. Instead of retrieving the homepage
or a URL specific to the Backbone application, the Collection will retrieve from a REST-
like resource ..

Backbone convention is such that the collection is not responsible for converting the
results of fetching the URL. Rather, the collection simply takes the list of attributes 2 and
sends each in turn to the model constructor specified by the model attribute. Aswe will see
throughout this book, the separation of collections of models and models themselves have
some fairly astounding implications. Here, it is enough to see that our Collection classis
incredibly small.

Thisisaclass, not the actual object that retrieves and stores collection data. For that,
we need an instance of the collection. Instances are generally done inside a Backbone's

IREST isaconvention for how to interact with objects stored on the server. If the list of appointments can be
retrieved from / appoi nt ment s, then an appointment with ID 42 can be retrieved from / appoi nt ment s/ 42.
To create a new appointment, a client would need to POST the/ appoi nt ment s URL. To update an
appointment, the client would PUT to/ appoi nt ment s/ 42. To delete an appointment, use the HTTP verb

to DELETE/ appoi nt nent s/ 42. Thisisagross over simplification of REST. See the appendix for more
resources.

2If the results of the URL are not a pure list of attributes, they can be "parsed” in the collection. For an example of
doing this with CouchDB, see: http://japhr.blogspot.com/2011/08/converting-to-backbonejs.html



http://japhr.blogspot.com/2011/08/converting-to-backbonejs.html

Writing Backbone
Applications

constructor. For very simple Backbone applications, this might be done in ajQuery
onDocumentReady callback:

$(function() {
var appoi ntnents = new Appoi nt ments();
appoi nt nents. fetch();

1)

Here we have created an empty collection object. To populate it, we invoke thef et ch()
method. As described, f et ch() makesan AJAX request of the server, converting the list
of attributes returned into individual model objects.

If possible, it is generally considered good practice to create the collection store already
popul ated:

$(function() {
var appoi ntnments = Appoi nt nents. reset (

[ {startDate: "2011-12-31", /* ... */ },
{startDate: "2012-01-01", /* ... */ },
{startDate: "2012-01-02", /* ... */ },

[* .. %]
]
)
1)

Thiswould initialize the store with 3+ appointments that are immediately available to be
consumed and displayed by Backbone views. Doing something like thisis only a good
ideaif the seed datais readily available. If thereis any latency, then it is better to present
an empty shell of the application to befilled in as quickly as possible by a subsequent
fetch().

Thisisall well and good, but so far we have only succeeded in retrieving datainto a
collection store. Unless we can display that information to the user, an awesome collection
storeis of no real benefit. Happily, Backbone views work quite well with this collection
store.

But first we need to define the underpinning of that collection: the model.




Writing Backbone
Applications

2.2. Models

Before looking at Views, let’ s take a quick peek at Backbone models. To completely
reproduce our pure AJAX version of the calendar application, almost nothing is required:

var Appoi nt nent = Backbone. Model . extend({});

With that, the collection store is now capable of creating individual objects within the
collection. Any attributes defined by the the collection’s/ appoi nt ment s URL resource
will be passed along to the model. To access those attributes—either directly or, more
likely, from a View—we can use the get () method:

var firstAppointnent = appoi ntnments. at (0)

var firstStartDate = firstAppointnent.get('startDate')

The above extracts the first appointment model from the collection. From first
appointment, we can get the "startDate" attribute.

Tip

In practice, it is quite rare to access individual modelsin acollection with at () .
Typically, you should attach views to each member of the collection and have them
render as appropriate. The at () method can be useful in testing, but in live code it
isgenerally acode smell.

Since the goal of this exerciseisto be able to update appointments as well as retrieve
them, we need to make one other change to our Appoi nt ment model. Specifically, we
need to tell it where it can access the corresponding server resource:

var Appoi nt ment = Backbone. Mbdel . ext end( {
url: '/appointnments'

1),

Amazingly, that is all that Backbone requires. Thisis because Backbone expectsto
interact with REST-like server resources. Given that, the above is all that Backbone needs
to know so that it can POST new appointmentsto / appoi nt ment s, PUT updatesto /
appoi nt ment s/ 42, and DELETE at / appoi nt ment s/ 42.

10



Writing Backbone
Applications

Tip

Of course, Backbone does not limit you to REST-like server code. See Chapter 12,
Non-REST Models for more information.

At this point, we can retrieve and update appointments. And yet we still have no vehicle
for an actual user to do this. Let’s change that next as we describe our first views....

2.3. Views

Just asin our vanilla AJAX application, the server is generating a month view that looks
something like this:

<t abl e>
<tr>
<t h>S</t h><t h>M/ t h><t h>T</t h><t h>W/ t h>
<t h>T</t h><t h>F</ t h><t h>S</ t h>
</tr>
<tr>
<td id="2012-01-01"><span cl ass="day- of - mont h" >1</ span></t d>
<td id="2012-01- 02" ><span cl ass="day- of - mont h" >2</ span></t d>
<td id="2012-01-03"><span cl ass="day- of - mont h" >3</ span></t d>
<td id="2012-01-04"><span cl ass="day- of - mont h" >4</ span></t d>
<td id="2012-01-05"><span cl ass="day- of - mont h" >5</ span></t d>
<td id="2012-01- 06" ><span cl ass="day- of - mont h" >6</ span></t d>
<td id="2012-01-07"><span cl ass="day- of - mont h" >7</ span></t d>

</[tr>

<tr><l-- ... -->/tr>

<tr><l-- ... -->/tr>

<tr><l-- ... -->/tr>

<tr><l-- ... -->/tr>
</t abl e>

Our collection of appointments contains appointments on the 1st and 2nd of the month:

11



Writing Backbone
Applications

$(function() {
var appoi ntnments = new Appoi nt ments();
appoi nt nent s. r eset (

[ {startDate: "2011-12-31", /* ... */ },
{startDate: "2012-01-01", /* ... */ },
{startDate: "2012-01-02", /* ... */ },
[* .. %]

]

)
1)

These appointments should render atitle and possibly some controls on the corresponding
date in the calendar. To make this happen, we need Backbone.js views.

An individual view might look something like:

var Appoi nt nent Vi ew = Backbone. Vi ew. ext end( {
tenpl ate: _.tenpl ate(
'<span cl ass="appointnment" title="{{ description }}"> +
<span class="title">{{title}}</span>' +
<span cl ass="del et e">X</span>" +
' </ span>'
).
initialize: function(options) {
this.container = $('# + this.nodel.get('startDate'));
opti ons. nodel . bi nd(' change', this.render, this);
b
render: function() {
$(this.el).htm (this.tenplate(this.nodel.toJSON()));
t hi s. contai ner. append($(this.el));
return this;

}
1)

That isfairly small, but thereis aso afair bit going onin there. Firstisat enpl at e()
method that describes the DOM structure of the appointment asit will be inserted into the
calendar:

12



Writing Backbone
Applications

var Appoi nt nent Vi ew = Backbone. Vi ew. ext end( {
tenpl ate: _.tenplate(
'<span cl ass="appointnment" title="{{ description }}"> +
<span class="title">{{title}}</span> +
<span cl ass="del et e">X</span>" +
' </ span>'

)
/1

1)

The description will be atooltip as the user hovers over the appointment. The title and a
"delete” icon are the elements that will actually be displayed 3,

Intheinitialize() method, which Backbone calls automatically if defined, we define
where in the calendar the appointment HTML will get attached (.i.e. the view’ s container)
and we instruct the view to listen to the underlying model for changes:

var Appoi nt ment Vi ew = Backbone. Vi ew. ext end({
/1
initialize: function(options) {
this.container = $('# + this.npdel.get('startDate'));
opti ons. nodel . bi nd(' change', this.render, this);

I -
/1
1)
Both the HTML and the model are following our 1SO 8601 convention for dates. The

HTML page assigns the SO 8601 date as the ID attribute for the corresponding table cell
in the calendar:

l-- ... -->
<td id="2012-01-01"><span cl ass="day- of - ront h" >1</ span></t d>
l-- ... -->

To access that table cell with jQuery, we would use the ID selector convention of:
$(' #2012-01-01').

The model has the 1SO 8601 date stored in the st ar t Dat e attribute:

SWe are usi ng mustache style templates here to aid in readability. See Chapter 5, View Templates with Underscore.js
for details.

13



Writing Backbone

Applications
...
{startDate: "2012-01-01", /* ... */ },
/1

To extract attributes from Backbone model objects, we need to use the get () method:
nodel . get (' startDate').

Thus, inthe View’'sini ti al i ze() method, we can identify the appointment model’s
container with: $(' # + this. nodel . get (' startDate')).Astute readerswill note
that we have not explicitly assigned the model attribute in out view—even though we are
making extensive use of it. Aswe will seein Chapter 18, Object References in Backbone,
Backbone does thisfor us.

Last up intheview isther ender () method, which actually buildsthe HTML for this
view:

var Appoi nt nent Vi ew = Backbone. Vi ew. ext end( {
/1
render: function() {
$(this.el).htm (this.tenplate(this.nodel.toJSON()));
t hi s. contai ner. append($(this.el));
return this;
}
1)

Here, we make use of another Model method, t 0JSON() , to get all of the attributes from
themodel (e.g.startDate,title,anddescription) asan object literal:

{
‘startDate': "2012-01-01",
"title': "Resolve to Learn Backbone.js",
"description': "Because it is awesone."
}

That object literal is then passed to the template that we defined earlier so that the
attributes of the object literal can be used to replace the variables of the same namein the
template.

Thus, this template:

14



Writing Backbone
Applications

<span cl ass="appointnent" title="{{ description }}">
<span class="title">{{title}}</span>
<span cl ass="del et e" >X</ span>

</ span>

When combined our model’ s JISON, becomes:

<span cl ass="appointnent" title="Because it is awesone.">
<span class="titl e">Resolve to Learn Backbone. | s</span>
<span cl ass="del et e">X</ span>

</ span>

Therest of ther ender () method insertsthisHTML into the View’sel , and theel into
the containing table cell:

var Appoi nt nent Vi ew = Backbone. Vi ew. ext end( {
/1
render: function() {
$(this.el).htm (this.tenplate(this.nmodel.toJSON()));
t hi s. cont ai ner. append($(this.el));
return this;

}
1),

I mportant

Backbone views automatically create an anonymousel to hold the HTML that it
needs. Normally the calling context will append that €l into its own element. In the
case of our calendar, there is no calling context, so the Appointment view itself
assumes this responsibility. In reality thisis a Backbone code smell. There should
be a Calendar view with this responsibility — that would probably be next on our
list of things to do with this application, but we leave it here as an exercise for the
reader.

We have our Appointment view defined, but it is still not being drawn on the calendar.
To actually get it added to the calendar, something needs to create the view objects.
Depending on the application, this can either be done in the Backbone application’s
constructor or in a Collection view.

The collection view is more proper:

15



Writing Backbone
Applications

var Appoi nt nent Col | ecti onVi ew = Backbone. Vi ew. ext end( {
render: function() {
this.collection.each(function(appoi ntnent) {
var view = new Appoi nt ment ({nodel : appoi ntnent});
vi ew. render () ;
1)
}
1)

/1 In the application constructor:
var appoi ntnments = new Appoi nt ments();
appoi nt nent s. r eset (

[ {startDate: "2011-12-31", /* ... */ },
{startDate: "2012-01-01", /* ... */ },
{startDate: "2012-01-02", /* ... */ },
[* .. %]

]
)

var collection_view =
new Appoi nt ment Col | ecti onVi ew({col | ection: appointnents});

col l ection_view. render();

Don’'t worry if that isabit much at this point. We discuss the collection view in much
more detail in Chapter 7, Collection View.

At this point, we have effectively replaced the following non-AJAX code from the
previous chapter with the Backbone equivalent:

function add_appoi nt ment (appoi nt nent) {
var date = appoi ntnent. start Dat e,
title = appointnment.title,
descri ption = appoi nt ment. descri pti on;

$('# + date).append(
‘<span title=""' + description + "">" +
title +
' </ span>'

16



Writing Backbone
Applications

We have a bit more code on our hands, but we have gained much: a persistent store object,
separation of concerns, and an idea of how to take the next steps. That last point should not
be overlooked. In our non-Backbone version of the application, we have no idea how we
might go about adding a delete widget to the appointment on the calendar.

With Backbone, we know that the responsibility for handing the delete click event lies
with the individual Appointment views. Backbone would have usdo thisviaan event s
property:

var Appoi nt nent Vi ew = Backbone. Vi ew. ext end( {
initialize: function(options) {
this.container = $('# + this.nodel.get('startDate'));
opti ons. nodel . bi nd(' destroy', this.renmove, this);

}l
events: {

"click .delete': 'handl eDel ete'
}l

handl eDel ete: function() {
t hi s. nodel . destroy();
return false;

b
1.,

tenpl ate: _.tenplate(
'<span cl ass="appointnment" title="{{ description }}"> +
<span class="title">{{title}}</span> +
<span cl ass="del et e">X</span>" +
' </ span>'

).

/1
1)

With that, a click on our delete widget is handed off to the handl eDel et e() method,
which signals the model to dest roy() itself. Once the model has successfully removed
itself from the server, it triggers a "destroy” event. Intheview’si ni ti al i ze method, we
bind "destroy" events to the built-in r enove() method, which removes the view itself.

17



Writing Backbone
Applications

Tip

Why not just renove() the element directly in handl eDel et e() ? We wait until
the model confirmsthat it has been removed from the persistence store because
something could go wrong. By relying on eventsin this manner, we can be sure
that things only disappear when they are supposed to and that errors can be handled
separately. Try doing that in our non-AJAX version of the application!

2.4. Additional Reading

This was by no means an exhaustive introduction to Backbone.js programming. If you are
still feeling alittle lost, we highly recommend any of the following:

» The main Backbone site [http://documentcloud.github.com/backbone/]. The source code
itself is aso worth reading—it is quite well written and nicely commented.

» Backbone Resources from Derick Bailey [http://backbonetraining.net/resources]. This
isagreat resource for all things Backbone. Derick also produces a series of screencasts
(both paid and free) that are well worth watching.

* Peepcode screencasts [ http://peepcode.com/products/backbone-js] the undisputed kings
of the screencast bring their considerable skill to bear on Backbone,js.

2.5. Conclusion

That concludes our whirlwind introduction to Backbone.js as well as the application that
will drive our discussion of much deeper topicsin the reminder of the book. Even if this
was your first exposure to Backbone, you should have the beginnings of understanding as
to how Backbone applications are written. Even better, you should have an idea as to why
some things are done they way they are.

Therest of the book is dedicated to exploiting this structure so that we might realize some
pretty amazing benefits.

Let’s get started...

18


http://documentcloud.github.com/backbone/
http://documentcloud.github.com/backbone/
http://backbonetraining.net/resources
http://backbonetraining.net/resources
http://peepcode.com/products/backbone-js
http://peepcode.com/products/backbone-js

Chapter 3. Namespacing
3.1. The Problem

Thisrecipeisentirely geared toward long term maintainability of Backbone applications.

As Backbone applications grow, they can quickly pollute the global browser namespace

with classes, instances and helper variables. In smaller implementations, this may not be
much of a concern. When applications grow (and shouldn’t they grow?), a poorly chosen
naming scheme can cause al manner of problems.

3.2. The Solution

Two different approaches have worked for us in the past.

3.2.1. Alternative #1: Global Object
Namespace

Thefirst involves placing al Backbone class definitions inside of a global "namespace”
object:

var Cal endar = {
Model s: {},

Col l ections: {},
Views: {}

b

Then, as you define each model, collection and view class (as well as any helper classes
that you might require), you can define them in this structure:

19



Namespacing

Cal endar . Mbdel s. Appoi nt nent = Backbone. Model . ext end( {
1. ..

1)

Cal endar . Mbdel s. Hol i day = Backbone. Mbdel . ext end( {
1. ..

1)

Cal endar . Col | ecti ons. Appoi nt nents = Backbone. Col | ecti on. ext end({
1. ..

1)

The principal advantage of this approach is that only one variable representing Backbone
models, views and collections makes its way into the global namespace: Cal endar . All
other classes are defined inside this global object.

Thisis especialy handy when concepts like "holidays" might have meaning outside of the
Backbone application. With this naming scheme, the Hol i day model is tucked away inside
the Cal endar . Model s "hamespace” where intent is clear.

Using this naming convention has the side-benefit of making class naming easier. If
you attempt to define thingsin the global namespace, it might make sense to name the
appointment model Appoi nt nent . But what, then, should you name the appoi ntment
view?

Tacking on the word Vi ew to each seems, er... tacky. Models would be given first-
class citizen treatment (e.g. Appoi nt ment ). Collections might get thisas well (e.g.
Appoi nt nent s). But views need the extra vi ew? Ugh.

And what if some views do not conflict with models and collection names (e.g.
AddAppoi nt ment )? Do you append "View" to these in order to follow a convention? Do
you omit "View" on these special casesto aid clarity?

Following the global object namespace convention means not having to choose. Y ou get
aclear convention that aids in maintainability with the added benefit of limiting risk of
conflicting class and variable names.

20



Namespacing

3.2.2. Alternative #2: Javascript Function
Constructor

The global object namespace is a simple approach. It also lends itself well to very large
applications with numerous classes that you might prefer to keep in separate files. For
more self-contained applications, afull blown Javascript object makes more sense.

This approach involves using a function constructor 1 With afunction constructor in
Javascript, all manner of objects, functions, data and even classes can be initialized inside
the function. Very little need be exposed to the outside world.

In the following, methods and data are defined inside the publ i ¢ and pri vat e object
literals. With that out of the way, object initialization can be performed. Lastly, public
attributes—and only the public attributes—of the resulting object are returned:
var Cal endar = function(options) {
var private = { /* private stuff here */ },
public = { /* stuff for the outside */ };

/1 Define methods and properties, adding to public as needed
/1 Perform any object initialization

return public;

}

var cal endar = new Cal endar () ;

In the global object namespace approach, we would still need to assign collection and view
variablesin the globa namespace:

var appoi ntnments = new Cal endar. Col | ecti ons. Appoi nt nent s;

With afunction constructor, this instance creation can take place inside of the function
where there is no danger of conflicting with other variables.

Applying this approach to a Backbone application, we have something along the lines of:

4This approach relies on Javascript closures. If thisis aforeign concept, check out "Inheritance: Functional” in
Douglas Crockford’s "Javascript: The Good Parts"

21



Namespacing

var Cal = function() {
var Models = { /* nodel classes */ };

var Collections = { /* collection classes */ };
var Views = { /* view cl asses */ };

/[l Initialize the app
var appoi ntnents = new Col | ecti ons. Appoi nt nent s;

new Vi ews. Appl i cation({col |l ection: appointnents});

return {
Model s: Model s,
Col I ections: Collections,
Vi ews: Vi ews,
appoi nt nent s: appoi nt ment s

}s
b

By defining Model s, Col | ecti ons, and Vi ews object literal variables inside of the
constructor, we have an easy time referencing things across—or even outside—concerns.
For example, when initializing the Appoi nt nent s collection, we can refer to new

Col | ecti ons. Appoi nt ment . With the global namespace approach, we always have to
use the global namespace new Cal endar . Col | ect i ons. appoi nt ment . Dropping asingle
word does wonders for code readability and long term maintainability.

By returning each of these classes from the function constructor with a key of the same
name, it means that the outside can get access to objects or classes with the exact same
naming scheme:

22



Namespacing

var Cal = function() {
/1

var appoi ntnments = new Col | ecti ons. Appoi nt nent s;

return {

Model s: Model s,

Col I ections: Collections,
Vi ews: Vi ews,

appoi nt nent s: appoi nt ment s

}s
s

var cal endar = new Cal endar () ;

[/ The appoi ntnments coll ection class
var Appoi nt nent sCol | ecti on = cal endar. Col | ecti ons. Appoi nt ment s;

/1 Actual appointnments fromthe initialized collection object
var appoi ntnents = cal endar. appoi nt nent s;

Encapsulating concepts inside functions is so useful, in fact, that it can be used inside the
function constructor. Instead of assigning the Model s, Col | ecti ons, and Vi ews variables
directly to object literals containing class definitions, we find it best to assign them to the
return value of anonymous functions. These anonymous functions, when invoked with the
() operator, return the same object literals—but with only those attributes that we want
exposed to the outside world.

For example, instead of defining the Model s variable directly:

var Cal endar
var Mbddel s

function() {
{ Appoi nt mrent : Backbone. Model . extend({...});};

/1
b

We can define the Models inside an anonymous function:

23



Namespacing

var Cal endar = function() {
var Models = (function() {
var Appoi nt nent = Backbone. Model . extend({...});

return {Appoi ntnent: Appointnent};
HQO;

/1
b

In this case, it buys us nothing. The end result of both approachesis aMdel s object
variable with an Appoi nt nent s key. This Appoi nt ment s key references the Appoi nt nent
class. This allows usto reference the class as Model s. Appoi nt ment from elsewhere inside
the function constructor (and ultimately as Cal endar . Model s. Appoi nt nent outside of the
function constructor).

Where this approach yields benefit is when you have classes that are only needed by other
classes, but not the outside world. For instance, the Appoi nt rent model may need to
create instances of appointment attendees:

var Cal endar function() {
var Model s (function() {
var Appoi nt nent = Backbone. Model . ext end( {
/1
attendees: function() {
_.(this.get("emails")).mp(function(email) {
return new Attendee(email)
1)
}
1)

var Attendee = Backbone. Mbdel .extend({ /* ... */ });

[/ Only return Appoi nt ment
return {Appoi nt nent: Appoi ntnent};

HO;
/1

24



Namespacing

Thisis especialy powerful with View classes. Generally, only a handful of View classes
need to be seen outside of a Backbone application. The remaining only pop-up on demand
from the main view.

In the following, only the Appl i cat i on view needs to be accessed from outside. Onceit is
initialized, instances of the remaining classes are used on demand from the Appl i cat i on
object or from each other:

var Cal = function() {
var Models = (function() { /* ... */ })();
var Collections = (function() { /* ... */ })();

var Views = (function() {
var Appoi nt ment = Backbone. Vi ew. extend({...});
var Appoi nt ment Edit = Backbone. Vi ew. extend({...});
var Appoi nt nent Add = new (Backbone. Vi ew. extend({...}));
var Day = Backbone. Vi ew. extend({...});
var Application = Backbone. View. extend({...});

return {Application: Application};
HQO;

/[l Initialize the app
var appoi ntnments = new Col | ecti ons. Appoi nt nent s;

new Vi ews. Appl i cation({col |l ection: appointnents});

return {
Model s: Model s,
Col I ections: Collections,
Vi ews: Vi ews,
appoi nt nent s: appoi nt ment s

}s
b

A second advantage of this approach is that, within the constructor, it is possible
to reference cross concern classes with less ceremony. When the collection needs
to reference the model, it can do so as Mvdel s. Appoi nt ment instead of the full
Cal endar . Model s. Appoi nt nent that isrequired in strategy #1.

25



Namespacing

var Collections = (function() {
var Appoi nt nents = Backbone. Col | ecti on. ext end({
nodel : Mbdel s. Appoi nt ment ,
parse: function(response) ({
return _(response.rows). map(function(row) { return row. doc ;});

}
1)

return {Appoi nt nents: Appoi ntnments};

HQO;

This simple, and seemingly small, change will pay significant dividends over the lifetime
of your Backbone applications.

This advantage is even more pronounced when referencing classes within the same
concern. For example, if clicking the day view spawns the add-appointment view, this can
be done with a simple reference to Appoi nt ment Add instead of needing to type (and read)
Cal endar . Vi ews. Appoi nt nent Add:

var Day = Backbone. Vi ew. ext end( {
events : {
"click': '"addd i ck'

}l
addd i ck: function(e) {
consol e. | og("addd i ck");

Appoi nt ment Add. reset ({startDate: this.el.id});

}
1)

The last advantage of this approach is the ability to define avery specific API for your
Backbone application. Only those properties and methods required by other objects or
even other Backbone applications are exposed.

A potential disadvantage of this approach is that individual model, view and collection
classes cannot be in separate files and included directly in the page:

26



Namespacing

<script src="/javascript/backbone/cal endar/ nodel s/ appoi nt nent.js">
<script src="/javascript/backbone/cal endar/col | ecti ons/appoi ntnment.js">
<script src="/javascript/backbone/cal endar/vi ews/ appoi nt nent.js">
<script src="/javascript/backbone/cal endar/vi ews/ appoi ntnent _edit.js">
<script src="/javascript/backbone/cal endar/vi ews/ appoi nt nent _add. js">
<script src="/javascript/backbone/cal endar/vi ews/ day.js">

<script src="/javascript/backbone/cal endar/vi ews/ application.js">

In the end, the choice is yours. Stick with the smple, global object that allows separate
filesfor each class or go for the self-contained goodness of javascript objects. Oneis sure
to meet your needs.

3.3. Conclusion

Namespacing is one of those concepts that you generally do not think about until it istoo
late. Even if you are fairly certain that your Backbone application is going to remain small,
itisbest to initialize and build models, views and controllers inside a common namespace
object. This eliminates questions about possible naming conventions and reduces the
footprint on the global namespace.

But, if your application islarge or has the potential to grow large, it is best to put
Javascript’s function constructors to good use. These can create a whole application
constructor that only exposes those pieces that you definitely want the rest of the page to
see. Better still, it gives the individual components of your application more direct access
to each other.

27



Chapter 4. Organizing with Require.js

Unlike most languages, Javascript lacks a built-in mechanism for loading libraries. There
are anumber of competing solutions, but require.js offers perhaps the most complete.

4.1. The Problem

Aswe just saw in Chapter 3, Namespacing, organizing Backbone code is a significant
challenge to the Backbone developer. As difficult as it may be to keep code well organized
within a namespace, it may be even more of a challenge to keep code organized on the

file system. Therequire,js library offersjust such a solution—doing so by exposing two
keywords (r equi r e and def i ne) that give Javascript avery familiar feel.

4.2. The Solution

Consider again our poor Calendar application. To draw the month view of the calendar
itself, we might use a series of Backbone views that start at the top-level Cal endar Mont h
and work all the way down to Cal endar Mont hDay. In our namespacing solution, this
would look something like:

wi ndow. Cal = function(root_el) {

var Mddels = (function() { /* ... */ })();

var Collections = (function() { /* ... */ })();

var Appoi nt ments = Backbone. Col |l ection.extend({ /* ... */ })();

var Views = (function() {
var Cal endar Mont h = Backbone. View. extend({ /* ... */ });
var Cal endar Mont hHeader = Backbone. View. extend({ /* ... */ });
var Cal endar Mont hBody = Backbone. View. extend({ /* ... */ });
var Cal endar Mont hWeek = Backbone. View. extend({ /* ... */ });
var Cal endar Mont hDay = Backbone. View. extend({ /* ... */ });

...
O

/! Routers, helpers, initialization...

28



Organizing with Require.js

In asmall Backbone application, that is not too bad. There are some definite advantages to
having everything in a single editor buffer—especialy if everything isfairly small.

But, if the application grows significantly, this can quickly become unwieldy. Searching
through a single file for the Appoi nt ment model can easily become a tedium of by-passing
places in which the model is instantiated rather than defined. Or, worse still, where the
Appoi nt nent view is defined instead of the mode!.

In the past, client-side Javascript devel opers have been reduced to a series of <scri pt >
tags, each of which populate a global namespace:

<scri pt>

var Cal endar = {
Model s: {},

Col l ections: {},
Views: {}

3
</script>

<script src="Cal endar/ Vi ews/ Cal endar Mont h. js" />
<script src="Cal endar/ Vi ews/ Cal endar Mont hHeader . js" />
<script src="Cal endar/ Vi ews/ Cal endar Mont hBody. j s" />
<script src="Cal endar/ Vi ews/ Cal endar Mont h\eek. j s" />
<script src="Cal endar/ Vi ews/ Cal endar Mont hDay. j s" />
<l-- ... -->

Without help, such a solution is very much at the mercy of networking

woes. If Cal endar Mont h creates an instance of Cal endar Mont hHeader , but

Cal endar Mont hHeader arrivesin the browser later than the requiring context, trouble
can ensue. Regardless of load order, require.js ensures that no code is evaluated until all
requirements have finished loading.

If there is significant network latency, then the round-trip time for the browser to fetch
each of these files can significantly degrade application startup. Network issues can be
mitigated by packaging all Javascript files into a single bundle. Although that introduces
some complexity in the deployment process, it is afairly well-established practice—with
or without require,js.

Another, more subtle problem with this approach is that it encourages inadvertent coupling
between the classes. Seemingly innocent references to higher order objects from alower
order object can quickly grow out of hand (see Chapter 18, Object References in Backbone

29



Organizing with Require.js

for examples). With require.js (and similar mechanisms in server-side languages),
dependencies must be explicitly declared. Coupling concerns become that much more
readily identified and eliminated.

Let’s see how arequire.js Backbone application looksin HTML.:

<scri pt data-nmai n="scri pts/min"
src="scripts/require.js"></script>

That'sit! All of the<scri pt > tags from our traditional approach have been replaced with
asingle<scri pt > tag. The sr ¢ of that script tag is the require.jslibrary itself.

How, then, does the application code get loaded? The answer isthe dat a- mai n HTML5
attribute, which pointsto the "main" entry point of the application. The ".js" suffix is
optional, so, in our case, we are loading from the publ i ¢/ scri pts/ main. j s file.

The entry point for arequire.js application is responsible for any configuration that needs
to be done as well asinitializing objects. For our calendar application, it might ook
something like:

require.config({

pat hs: {
"jquery': 'jquery.mn',
‘jquery-ui': "jquery-ui.mn'
}
1)

require([' Cal endar'], function(Cal endar)
var cal endar = new Cal endar ($("' #cal endar'));

1)

In the configuration section, we are telling require.js where to find libraries that are
referenced. For the most part, require.js can guess the library needed. In this case,

wetell require.jsthat, when werequire(' j query'), that it should use the minified
jquery.mn.js (againthe".js" suffix is not needed). This can be especially handy

if libraries include version numbers or other information in the filename (e.g. jquery-
ui-1.8.16.custom.min.js). There are many conf i g options ! but pat hs suffices 80% of the
time.

thttp://requirejs.org/docs/api.html#config

30


http://requirejs.org/docs/api.html#config

Organizing with Require.js

Asfor loading and initializing our Backbone application, it requires three lines of
Javascript:

require([' Cal endar'], function(Cal endar){
new Cal endar ($(' #cal endar'));

1)

Thefirst argument tor equi re() isalist of dependent libraries. In this case, we only want
public/scripts/Cal endar.js. Surprisingly, we do not need to pull in jQuery, Backbone
or anything else—those dependencies are resolved lower in the Backbone application.

The calendar classis supplied to the anonymous function, to which we bind the cal endar
variable. At this point, all that isleft isto instantiate the application.

For experienced Javascript coders—especially front end developers—thisis pretty
amazing. It isalmost asif our beloved Javascript has become a'real” server-side language
like Ruby, Python or Perl—complete with requi re /i nport statements. This, of course,
is the entire point of require.js. It allows us to define and require modules, classes, JSON,
and even functions.

To see how we might define arequire.js module, let’s have alook at the Cal endar . j s
classthat is being required above:

/1 public/scripts/Calendar.js
define(function(require) {
var $ = require('jquery')
_ = require('underscore')
Backbone = require(' backbone')
, Router = require(' Cal endar/Router')
, Appoi ntnments = require(' Cal endar/ Col | ecti ons. Appoi nt nents')
, Application = require(' Cal endar/Vi ews. Application')
to i so8601 = require(' Cal endar/ Hel pers.to_i so8601');

return function(root _el) {
// Instantiate coll ections, views, routes here

¥
1)

Require.js modules are built with the def i ne() method. The def i ne() method isroughly
analogous to the nodul e keyword in other languages—it encapsulates a code module. By
convention, the first thing done inside arequire.js module is requiring other libraries. This
iswhere jQuery and Backbone dependencies finally start to be seen.

31



Organizing with Require.js

I mportant

At the time of thiswriting, thiswill only work with a minor fork of Backbone
maintained by James Burke 2 the require.js maintainer. Jeremy Ashkenas has
publicly stated his intention to merge some form of thisinto Backbone by the next
release, so we are not going too far out on alimb here.

Also of note, is the naming convention that we use for the individual Backbone classes on
the server. Instead of grouping them in Mbdel s, Vi ews and Col | ect i ons sub-directories,
we put everything inside the cal endar top-level application directory. In there, we embed
the type of classinto the filename. This makesit easy to tell the difference between

Model s. Appoi nt ment . j s and Vi ews. Appoi nt nent . j s in our editors (otherwise we
would just have two files named Appoi nt nent . j s).

Require.js modules must return a value—thisis what gets assigned by ther equi re()
function. In our cal endar class, we use afunction constructor to instantiate three things: a
Backbone collection, atop-level view and the router. Then, we return an object for the new
Cal endar ($(' #cal endar')) call:

define(function(require) {
/1 require things

return function(root_el) {
var appoi ntnments = new Appoi nt ment s()
, application = new Application({
col I ection: appoi nt ments,
el: root_el

1)

new Router({application: application});
Backbone. hi story.start();

return {
application: application,
appoi nt nent s: appoi nt ment s
}i
}i
1)

2https://github.com/jrburke/backbone/tree/optamd3

32


https://github.com/jrburke/backbone/tree/optamd3

Organizing with Require.js

Taking aquick peek at a how a Backbone view is defined, we again see the def i ne()
statement at the top, followed by the variousr equi re() statements. Last up comes the
return value, an anonymous view class definition:

/] scripts/Cal endar/ Vi ews. Application.js
define(function(require) {
var Backbone = require(' backbone')
$ = require('jquery')
_ = require('underscore')
TitleView = require(' Cal endar/Views. Titl eView )
Cal endar Mont h = requi re(' Cal endar/ Vi ews. Cal endar Mont h' )
Appoi nt ment = require(' Cal endar/ Vi ews. Appoi nt nent"' ) ;

return Backbone. Vi ew. ext end({
/1

1)
1)

Tip
Things like assigning the jQuery function to the dollar sign are much more explicit
inrequirejs.$ = require('jquery').

At first, returning an anonymous view class might seem alittle foreign, but this allows us
the flexibility of assigning the class name however we see fit in the requiring context:

var Application = require(' Cal endar/ Vi ews. Application');
/1l or

var Cal endar = {
Views: {
Application: require(' Cal endar/Views. Application');

}
}

Note

Require.jsis very good about loading modules only once regardless of how many
times in the dependency tree a particular moduleisr equi re() 'd. Nearly all of
your Backbone classes will need to do something along the lines of Backbone =

33



Organizing with Require.js

requi re(' backbone') . Mercifully, require.js spares the user the overhead of re-
requesting that same library repeatedly.

At therisk of being redundant, a model class might be defined as:

/'l scripts/ Cal endar/ Model s. Appoi ntnent. s
define(function(require) {
var Backbone = require(' backbone')
_ = require('underscore');

return Backbone. Model . ext end( {
/1 Normal nodel attributes

1)
1),

The collection that uses this model could then be defined as:

/1 scripts/ Cal endar/ Col | ecti ons. Appoi nt nents. s
define(function(require) {
var Backbone = require(' backbone')
, Appoi ntment = require(' Cal endar/ Mddel s. Appoi nt nent"' ) ;

return Backbone. Col | ecti on. ext end( {
nodel : Appoi nt nent,
url: '/appointnments',
[/ Cther collection attributes here

1)
1)

With require,js, the list of individual library files needed to run a Backbone application
isno longer the responsibility of the web page that happens to include the application.
Now, it is the dependent libraries who are tasked with this job—a much saner, more
maintai nabl e sol ution.

4.2.1. Requiring Other Things

Require.jsis abrowser hack rather than alanguage hack. That is, once it analyzes
dependencies, it adds new libraries by appending new <scr i pt > tags to the body of
the hosting web page. Sinceit is already appending things to the page, there is nothing
preventing require.js from appending other things—like CSS and HTML templates.

34



Organizing with Require.js

HTML templates, in particular, can further aid in the maintainability of Backbone
applications. Consider, for instance, an appointment template (using the mustache-style
from Chapter 5, View Templates with Underscore.js) that displays the title and a delete
widget:

/1 public/javascripts/cal endar/ Vi ews. Appoi nt ment . ht m
<span cl ass="appointnent" title="{{ description }}">
<span class="title">{{title}}</span>
<span cl ass="del et e" >X</ span>
</ span>

There are some advantages to keeping such HTML templatesin our views, especialy if
they are small. Still, there are times when the views themselves get long or the syntax
highlighting in our editors would be handy. In such cases, we can install the require.js text
plugin 3, The defined sections of our views can then require the HTML template:

define(function(require) {
var Backbone = require(' backbone')
_ = require('underscore')
htm _tenplate = require('text!cal endar/vi ews/ Appoi ntnent. htm ')
, tenplate = .tenplate(htm _tenplate)
1. ..

return Backbone. Vi ew. ext end({
tenpl ate: tenpl ate,
1. ..

1),
1),

With that, we are now maintaining templates separately from the views without any
significant changes to the overall structure of the code.

4.2.2. Optimization / Asset Packaging

In the end, even avery small Backbone application organized with require.jsis going to
be comprised of alarge number of individual files. By way of example, alimited calendar
application might look like:

3http://requirejs.org/docs/downl oad. html##text

35


http://requirejs.org/docs/download.html#text

Organizing with Require.js

scripts
+- - backbone. | s
+-- Cal endar
+-- Col | ections. Appoi ntments.js
+-- Hel pers.tenplate.js
+-- Hel pers.to_iso8601.js
+-- Mbdel s. Appoi ntment. j s
+-- Router.js
ews. Application.js
ews. Appoi nt ment Add. j s
ews. Appoi ntmentEdit. | s
ews. Appoi ntrent . j s
ews. Appoi nt ment . ht m
ews. Cal endar Mont hBody. | s
ews. Cal endar Mont hDay. j s
ews. Cal endar Mont hHeader . j s
ews. Cal endar Mont h. j s
ews. Cal endar Mont h\W\ek. | s
ews. Cal endar Navi gation. | s
+- - ews. TitleView js
+-- Calendar.js
+-- jguery.mn.js
+-- jguery-ui.mn.js
+-- main.js
+-- require.js
+-- underscore.js

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

S

That is 24 round trips (request / response) that the browser would need to make beforeit is
even capable of booting the application. Even if the client is connected to the server over a
fast, low latency connection, there is way too much overhead in that setup 4 To get around
that, of course, modern websites use asset packaging and CDNs.

Most asset packages are ignorant of require.js so we might be given to despair. Happily,
require.jsincludesits own asset packager, r . j s. There are at least two waystoinstall r. j s
®, Which installation method is best depends on individual development environments and
preferences.

4Unless you are using something like SPDY . By the way, you should totally buy Chris's "The SPDY Book" if you
have not already :D

>Download and installation instructions are available from the require.js site: http://requirejs.org/docs/
optimization.html

36


http://requirejs.org/docs/optimization.html
http://requirejs.org/docs/optimization.html

Organizing with Require.js

To run the optimization tool, it is easiest to create an app. bui | d. j s filein your
application’s root directory. Thisfile contains a number of options, some of which will be
nearly duplicate of ther equi re. confi g optionsin the data-main file:

({
/] Where HTML and JS i s stored:

appDir: "public",

/1 Sub-directory of appDir containing JS:
baseUrl: "scripts",

/1 \Where to build the optim zed project:
dir: "public.optimzed",

/! Modules to be optim zed:

nodul es: |

{

name: "nain

}
1
/! Resolve any 'jquery' dependencies to the versioned jquery file:
pat hs: {

"jquery': 'jquery-1.7.1
}

})

The pat hs option has exactly the same meaning in the build configuration that is hasin
data-main—it tells require.js to map named dependencies to non-inferable filenames.
Here, we aretelling require.jsto require referencestoj query fromthej query-1.7.1.js
resource. At some point, the optimization tool may be able to extract thisinformation
directly from dat a- mai n. At the time of thiswriting, it is separate to allow maximum
flexibility when optimizing.

Most of the other configuration options are self-explanatory. To slurp in the entire
dependency tree, al we need to do is specify the mai n. j s module viathe nodul es
attribute—r . j s will take care of the rest for us.

With that, it is asimple matter of building the optimized version of our public directory:

37



Organizing with Require.js

$r.js -o app.build.js
Traci ng dependencies for: min

scripts/min.js

scripts/jquery-1.7.1.js

scri pts/underscore. s

scri pt s/ backbone. s

scri pts/ Cal endar/ Vi ews. Pagi nator. | s

scripts/ Cal endar.js
scripts/min.js

That'sit! The optimized version of the site is now available in the directory specified by
dir (weused public. optim zed). We can then point our web server at that directory and
serve up super fast, packaged code.

4.3. Conclusion

Web developers have lived with the lack of a mechanism to require Javascript filesfor so
long that we are almost numb to the pain. We would belittle a server-side programming
language that |acked something so basic—how can we possibly produce quality code
without areliable way to organize it? We could almost excuse the lack of this ability in the
past with Javascript—after all it isonly recently that we have witnessed the explosion of
client-side coding.

But in 2012 and beyond, it behooves us to use a module loader like require.js. It makes our
code much more readable, and easier to maintain. It's amost like programming in areal
language.

38



Chapter 5. View Templates with
Underscore.js

5.1. The Problem

It will happen.

No matter how hard you try to keep your Backbone.js views free from large amounts of
HTML, therereally are times when more HTML does solve the problem (unlike XML and
guns).

But how do you solve the immediate problem without sacrificing maintainability and
readability in the future? Discretionary use of underscore.js templates will go along way.

5.2. The Solution

Let’s consider a calendar navigation view. If the user is currently viewing appointments
for January 2012, the view would need to render HTML along the lines of:

<di v cl ass="previous">

<a href="/#nmont h/ 2011- 12" >pr evi ous</ a>
</ di v>

<di v cl ass="next">

<a href="/#nmont h/ 2012- 02" >next </ a>
</ di v>

One way to accomplish this might be concatenating HTML and date strings:

39



View Templates
with Underscore.js

[* This is not a good idea */
var Cal endar Navi gati on = Backbone. Vi ew. ext end({
render: function() {
var date = this.collection.getDate(),
previ ous_nmont h = Hel pers. previ oushbnt h(dat e),
next nonth = Hel pers. next Mont h(date);

var htm =
'<div class="previous">" +
"<a href="/#nmonth/' + previous_nonth + '">previous</a> +
"</div>' +
'<div class="next"> +
‘<a href="/#nmonth/' + next_nonth + '">next</a> +
</ div>';

$(this.el).htm (htm);

return this;

}
1)

Thisisapoor long term solution because, as short asit is, ther ender () method is doing
way too much. It calculates the next/previous months, it builds HTML, and it inserts that
HTML into the DOM.

It also failsthe "at aglance" test becauseit is hard to pick out the variables from the noise
of the HTML. Since the variables are the most important thing going on here, it should be
immediately obvious how they are used. Besides, it isapain typing all of those single and
double quotes.

Tip

If codefailsthe"at aglance" test, it lackslong term maintainability. That is, if itis
hard to pick out the important elements of a particular sesgment of code, then it will
be that much harder to understand intent when trying to track down abug or add a
feature six months later.

A better solution isto make use of the templating that is built into underscore.js (upon
which Backbone is built).

Passing atemplate string to the _. t enpl at e() method returns a template function:

40



View Templates
with Underscore.js

var tenplate fn = . tenplate(
'<div class="previous">" +
"<a href="/#nmonth/{{ previous_date }}">previous</a> +
"</div> o+
'<div class="next">" +
'<a href="/#nonth/{{ next_date }}">next</a> +
"</ div>'

)

The template function will accept a single argument—an object literal that contains

the values to be inserted into the template. In this case, we want to insert values for

previ ous_dat e and next _dat e. If the current month is January 2012, we would want to
set these values to December 2011 and February 2012 respectively:

tenmpl ate fn({
previ ous_date: "2011-12"
next date: "2012-02"

))
The result of that template function call would then be:

<di v cl ass="previous">

<a href="/#nmont h/ 2011- 12" >pr evi ous</ a>
</ di v>
<di v cl ass="next">

<a href="/#nmont h/ 2012- 02" >next </ a>
</ di v>

In Backbone applications, thisis typically implemented by assigning the template function
to an attribute on the View class. Since this attribute points to a function, we can call it as
if it were a method on the object.

Warning

Template methods are not real methods—the special t hi s variable will not refer to
the current object. Rather it would refer to the template function from underscore.
For the most part, this should not matter—you should only pass variablesinto a
template, not assign them from attributes of the object. But, if you redlly, really
need to, the judicious use of an _. bi ndAl | in the object’ sinitialize should do the
trick.

41



View Templates
with Underscore.js

Toillustrate, let’ srevisit the Cal endar Navi gat i on view. We assign the template function
tothet enpl at e attribute of the view class. Ther ender method can then call the template
functionast hi s. tenpl ate():

var Cal endar Navi gati on = Backbone. Vi ew. ext end({
tenpl ate: _.tenplate(
'<div class="previous">" +
'<a href="#nonth/{{ previous_date }}">previous</a> +
"</div>' o+
'<div class="next"> +
'<a href="#nmonth/ {{ next_date }}">next</a> +
' </ div>'
).
render: function() {
var date = this.collection.getDate();
$(this.el).htnl (this.tenplate({
previ ous_dat e: Hel pers. previ oushvont h(dat e),
next date: Hel pers. next Mont h(dat e)

1))

return this;

}
1)

Best of al, thet enpl at e method has a single responsibility: building the HTML structure.
Similarly, ther ender () method has a single responsibility as well: inserting the result of
the template function call into the DOM.

Both methods are small and focused, which means that there are fewer chances for bugs
to occur. If bugs do occur, then it will much easier to identify the culprit. Splitting things
up like this keeps things so small, in fact, that including the HTML directly in the template
method definition does not feel onerous.

Tip

The underscoret enpl at e() method can take either one or two arguments. The
first isthe template string, the second is the object literal that isinterpolated into
the template. If you only pass the template string argument, thent enpl at e()
returns a function that accepts one argument—the object literal.

42



View Templates
with Underscore.js

5.2.1. Avoid Script Tag Templates

Many tutorials and documentation give examples of script tag underscore templates such
as.

<script type="text/tenpl ate" id="cal endar-appoi nt nent-tenpl ate">
<span cl ass="appointnent" title="{{ description }}">

{{title}}

<span cl ass="del et e" >X</ span>
</ span>
</script>

There are some definite advantages to this kind of approach. By using a<scri pt > tag, the
intent is quite clear—this will be used to support code. A t ype of t ext / t enpl at e IS not
recognized by any browser vendor as a programming language, but it is readily understood
by any devel oper reading the code.

Using such templatesis similarly easy. Simply reference thei d attribute of the script tag
and you have access to the template viaajQuery ht m () call:

var Appoi nt ment = Backbone. Vi ew. ext end({
tenpl ate: _.tenplate($(' #cal endar-appointnment-tenplate'). htm ()),
render: function() {
$(this.el).html (this.tenplate(this.nodel.toJSON()));
return this;

}
1)

From there, it isjust as easy to apply the script template as it was to apply the inline
template.

Easy. Easy. Easy. So what is the problem?
In two words: code organization.

By itsvery nature, the <scri pt > tag isHTML that needsto residein the HTML
document. Most of your Backbone code is better organized in . j s filesloaded elsewhere.

At best, you can include script templates immediately after the script tag defining the
Backbone view:




View Templates
with Underscore.js

<script type="application/javascript">
var Appoi nt nent = Backbone. Vi ew. ext end( {
tenpl ate: _.tenpl ate($(' #cal endar - appoi ntmrent-tenplate'). htnm ()),
render: function() {
$(this.el).htm (this.tenplate(this.nodel.toJSON()));
return this;
}
1)

</script>

<script type="text/tenpl ate" id="cal endar-appoi nt nent -t enpl ate">
<span cl ass="appointnent" title="{{ description }}">

{{title}}

<span cl ass="del et e" >X</ span>
</ span>
</script>

But that isterrible! Asyou scan through your code, you will be constantly be interrupted
by HTML snippets—both in templates and in your code.

It is best to keep the number of script templates to a minimum by inlining underscore
templates:

var Appoi nt nent = Backbone. Vi ew. ext end( {
tenpl ate: _.tenpl ate(
'<span cl ass="appointnment" title="{{ description }}"> +
“{{title}}' +
' <span cl ass="del et e" >X</ span>'" +
' </ span>'
).
render: function() {
$(this.el).htm (this.tenplate(this.nodel.toJSON()));
return this;
}
1)

Since the template in this case is small, we are not sacrificing much in the way of
readability by including it directly in the view class. Not only do we have the template
available without jarring <scr i pt > tags getting in the way, but no searching is required to
find the template. The template is right in the Backbone view itself.




View Templates
with Underscore.js

Tip

K eep the number of script templates to an absolute minimum. Sometimes they are
anecessary evil, but regard them as a code smell. Y our code will thank you. Y our
future self will thank you.

If unsure, look for ways to break large templates into smaller views.

5.2.2. ERB Sucks {{ Use Mustache }}

The default variable / code handling in Backbone.jsis intended to make life easy for Ruby
programmers. Ruby programmers are a bunch of whiny, elitist hipsters whose opinion
should not influence you (much) 1 Especialy since they inflicted ERB on the world. ERB,
or embedded ruby allows developers to dynamically insert variables (or even code) into
templates.

The navigation template from earlier in this recipe can be written with ERB as:

<di v cl ass="previous">
<a href="#nmont h/ <% previ ous_date %" >previ ous</ a>
</ di v>
<di v cl ass="next">
<a href="#nmont h/ <% next date %">next</a>
</ di v>

Do you seeit in there? Of course you don’'t. ERB lacks any semblance of readability when
used in HTML since it is delimited with the same less-than and greater-than symbols that
HTML uses.

Upon closer inspection of the above, you might notice <% previ ous_date %. Thisis
how ERB templates signal that the pr evi ous_dat e variable needs to be inserted into the
template. "Inserting into" is also known as interpolating.

Happily, Underscore exposes a mechanism for changing from ERB to a saner delimiter.
We prefer the mustache 2 format of double curly braces, which is much easier to pick out
when scanning the template:

Lwe are both rubyists by profession
2http://mustachegithub.com/

45


http://mustache.github.com/

View Templates
with Underscore.js

<di v cl ass="previous">
<a href="#nmonth/{{ previous_date }}">previ ous</a>
</div>
<di v cl ass="next">
<a href="#nonth/{{ next _date }}">next</a>
</div>

Less-than, greater-than symbols just blend into the noise of the HTML. There are no
common use-cases for double curly braces so they naturally stand out when skimming the
template. This readily identifiable aspect of mustache makesit ideal for usein Backbone
applications.

To achieve mustache interpolation, change the value of _. t enpl at eSet t i ngs:

_.tenplateSettings = {
interpolate : /\{\{(.+?)\}\}/g
}s

Tip

Ah regular expressions. But as regular expressions go, our mustache interpolation
regular expression is not that bad:

INVL(+2)\J\ M g

Obvioudly, it matches double curly braces before and after (. +?) . The parentheses
around that indicates that everything inside will be fed back to underscore to

be replaced with the corresponding variable name. Of the remaining regular
expression, . +?, the period matches any character, the plus matches one or more
(of any character) and the question mark makes the expression "non-greedy".

Non-greedy regular expressions stop matching sooner rather than later. A greedy
version of our regular expression would match this entire string:

{{ one }} two three four {{ five }}

In other words, it starts matching on the two curly braces at the beginning of the
line and does not stop until it reaches the end of the line (after "five"). By making
the regular expression non-greedy, the matching stops as soon as the text after the
regular express (inthiscase, \ }\ }) isreached.

46



View Templates
with Underscore.js

Thus we pull out two variablesto be interpolated: one and fi ve.

5.2.3. Avoid Evaluation

By default, underscore templates are not limited to interpolating values into templates.
They can also evaluate Javascript. Instead of using the<% ... % delimiter, evaluation
in underscore templates takes placeinside<% . . . % (without the equals sign).

By way of example, building a month view for a calendar might look something like:

/* Not a good idea */

<% ([0,1,2,3,4,5]).each(function(i) { %

<tr class="week<% i %">
<td cl ass="sunday"></td>
<td cl ass="nonday"></td>
<td cl ass="t uesday" ></td>
<td cl ass="wednesday" ></t d>
<td class="t hursday"></td>
<td class="friday"></td>
<td cl ass="saturday"></td>

</tr>

<%}); %

This template features both interpolation (the week number in the class of the <t r > tag)
and evaluation (the anonymous function called for each week).

It isincredibly awkward to open the block of our function only to immediately close the
ERB tag. Even worse, the last line of thistemplate— "<% }); %" — looks as though a
cat was loosed on the keyboard of an unsuspecting devel oper.

Evaluating code in atemplate is almost always a code smell. Code evaluation is more
often than not a separate Backbone view trying to escape. In this Mont h view example, itis
more proper to create a\Week view with the <t r > tag. ThisWeek view, in turn, would then
have 7 Day views that will hold the <t d> elements.

We take this advice so serioudly that we normally do not define an eval uat e template
setting:

_.tenplateSettings = {
interpolate : /\{\{(.+?)\}\}/g
I

47



View Templates
with Underscore.js

With this setting, it is not possible to evaluate code in our templates. If ever we are
tempted by code evaluation in atemplate, we would be forced to ask ourselves very
serioudly if wereally need it. And we never do 3,

5.3. Conclusion

We use underscore templating amost without thinking in the remainder of the recipes.
Yet, it iswell worth taking a step back to consider how we really want to use it and why.

To promote code readability, and hence maintainability, we will always use the mustache-
style interpolation syntax. Along those same lines, we will never use evaluatable templates
in these recipes. Views should be smart, templates dumb.

SWell, almost never.

48



Chapter 6. Instantiated View

6.1. Introduction

The Instantiated View pattern is a simple pattern that changesthe way aview is
instantiated when it only needs one instantiation throughout the entire application. This
pattern isreally more of anifty trick, however we use it so frequently throughout the book
that it needed its own chapter.

6.2. The Problem

In web applications there are often objects in the user interface that only exist once. For
example, anavigation bar at the top of the page, or a search box, or information about
the user that is currently logged in. When we have these objects in anormal program we
would use aglobal variable, or more eloquently a singleton pattern. A singletonisanice
way of auto-instantiating an object on demand and maintaining a single instance under
what is more or less aglobal variable.

A global variableis amuch simpler way of accomplishing thistask, but is generally
frowned upon because it pollutes the global scope of the program. However, in aweb
application we are making active use of proper namespacing, and can therefore get

away with simply making a global variable instead of bothering to make a singleton.
Furthermore, jQuery makesit very easy to automatically instantiate an instance on the boot
of our application.

In HTML and Javascript, there is already the notion of a global identifier in the DOM,
‘id's. A div with aglobal id looks like:

<div id="list"> ama list. Because nmy id is set there should only be one of ne

In Backbone, we often go about defining our views then instantiating them, like this:

49



Instantiated View

MyAppl i cation. Vi ews. Li st = Backbone. Vi ew. extend({/* etc */});
[/ instantiation
$(function() {
M/Appl i cation. Li stView = new M/Appl i cation. Vi ews. Li st ({
el: $("#list")
1)
})

Notice that we're passing the element in as a parameter to the view. This decouples the
view from its actual location from the DOM, and allows us to change that DOM id without
having to update the view itself, just the instantiation of the app.

There is nothing functionally wrong with this code, it will behave as intended. The
main issue here is the redundancy and ambiguity of the variable names. It is up to the
programmer to remember that MyAppl i cati on. Vi ews. Li st isthe class definition of
alist that is only used once in the application and should not be instantiated, and that
MyAppl i cati on. Li st Vi ewis our reference to the object that we should use in the
application.

We can make this code clearer, cleaner, shorter, and less error prone with asmall change
to our view definition.

6.3. The Solution

The fix isto assign an instantiation of an anonymous classto MyAppl i cati on. Li st Vi ew.

$(function() {
MyAppl i cati on. Li st Vi ew = new (Backbone. Vi ew. ext end({
initialize: function() {
_.bindAl'I (this, 'render');
}1
render: function() {
$(this.el).htm ("I ama list");
return this;
}
}))({el: $("#list')}).render()
1)

In this approach, we are doing the typical extension of atop-level Backbone class with
custom attributes and methods. The difference, however, isthat we do not assign the result

50



Instantiated View

to aclass name aswe did earlier. Instead, we immediately create anew instance of this
anonymous class. Lastly, MyAppl i cat i on. Li st Vi ewisassigned to the resulting object.

This lets us make one version of the view without leaving an enticing (or confusing) class
around that could be instantiated again. It also saves us afew lines of typing and reduces
the number of variables in our namespace. It also lets us avoid confusing nomenclature
like MyAppl i cati on. Vi ews. Li st and MyAppl i cati on. Li st Vi ew. Which oneisthe
instantiated version and which one is the class that we' re not supposed to use?

6.4. Conclusion

The end result is that there is no way to instantiate a new instance of the class *. A good
pattern not only let’s you do something great, it also prevents you from doing something
bad. The Instantiated View prevents you, or someone else, from accidentally instantiating
aview that binds to what should be a unique DOM element. Just as important, the intent of
the object is much clearer.

Thisis Javascript, so it is possible to clone the object or add it to a prototype chain. But you, or other developers,
would have to work hard to subvert the intent.

51



Chapter 7. Collection View

7.1. Introduction

The Collection View is a pattern that describes how to render views within views,
specifically with a Collection holding many Models which isacommon occurrencein a
Backbone application. However, this pattern can easily be applied to any situation where
you have aview that needs to render a dynamic number of sub-views.

7.2. The Problem

In server-side applications, it is common to see routes that represent many items of the
same type. For example, the/ appoi nt nent s route might display HTML for all of the
appointments in the system.

Typicaly, this server-side code gathers up al appoi nt nent s via a database query. It then
iterates over each record, rendering them as HTML in atemplate. Thisisal well and good
when the following conditions are true:

1. The server-side template library can handle iteration (or arbitrary code)
2. The generated page is not interactive

Unfortunately, neither of these conditions hold for a modern client-side web application.
Additionally, we encounter other obstacles:

1. Maintaining client-side templates quickly grows disorganized and confusing when they
arefilled with logic and iteration

2. A lot of interactive code is concentrated into afew "master” views instead of spread
throughout the models

The first point isimmediately apparent for anyone who has worked on alarge client-side
application (otherwise, take our word for it!). The second point is more subtle and will
creep into your application over time.

52



Collection View

Consider our appoi nt ment s application, which might consist of:
* Model s. Appoi nt ment s

* Col |l ecti ons. Appoi nt ment s

* Vi ews. Appoi nt nent s

* Tenpl at es. Appoi nt nent s

Think about what Tenpl at es. Appoi nt nent s would look like. One of the first lines will
be the beginning of an iteration over individual appoi nt nent s. The majority of thisview
will be concerned with rendering an individual appoi nt ment . This should immediately
be an indicator that Tenpl at es. Appoi nt ment s is not doing what it was designed to do. A
template for rendering multiple appointments should only be concerned with concepts like
lists and ordering, not with the process of rendering individual items.

Additionally, if we have a master Appoi nt ment sVi ew, its event bindings will be on the
list of appointments not on the individual appointments. Thiswill be much harder to
implement naturally using Backbone's event binding.

Furthermore, if an event istriggered signaling that an individual appoi nt nent has
changed and must be re-rendered, we need to re-render the entire list of appoi nt ment s.
Thisisnot only expensive, but can jar the user’ s view by breaking their scrolling position
(if thelist islong and they arein the middle). It also meansthat asingle view islistening
to eventstriggered by many models, which is another code smell.

In well designed server-side applications, Tenpl at es. Appoi nt ment s will simply loop
over the appoi nt ment s and immediately render a Tenpl at es. Appoi nt ment template

for each one, thus delegating that work onto another class. Thisiswhat we want to do in
Backbone. The difference is that, in Backbone, it is much simpler and more natural to have
views call subviews, instead of having templates call subtemplates.

7.3. The Solution

First, we need a new application structure:

* Model s. Appoi nt nent s

53



Collection View

* Col |l ections. Appoi nt nents
* Vi ews. Appoi nt nent s

¢ Tenpl at es. Appoi nt nent s

* Vi ews. Appoi nt nent

¢ Tenpl at es. Appoi nt ment

We have added a second view and second template to handle individual
appointments. Let’stake alook at what the top level Tenpl at es. Appoi nt ment s and
Vi ews. Appoi nt ment s might look like:

Tenpl at es. Appoi ntments = _.tenpl at e(
"<h2>Here is a list of Appointnents</h2>"

)

Vi ews. Appoi nt nents = Backbone. Vi ew. ext end( {
tenpl ate: Tenpl at es. Appoi nt nent s,

initialize: function(options) {
_.bindAll(this, "render', "addAll', 'addOne');
this.collection.bind('add, this.addOne);

}l

render: function() {
$(this.el).htm (this.template());
this.addAl |l ();
return this;

b

addAl | : function() {
this.collection.each(this.addOne);

b

addOne: function(nodel) {
vi ew = new Vi ews. Appoi nt nent ({ nodel : nodel });
vi ew. render () ;
$(this.el).append(view el);
nodel . bi nd(' renove', view. renove);

1)

54



Collection View

$(function() {
[/l Create a collection
var appoi ntnments = new Col | ecti ons. Appoi nt nent s( [
{title: 'Doctor Appointnment', date: '2011-01-04'},
{title: "Birthday Party', date: '2011-01-07'},
{title: 'Book Club', date: '2011-01-14'}

1);

[/l Create our top |level view attached to the dom
new Vi ews. Appoi nt ment s( {
col  ection: appointnents, el: $('#appointnments')
}).render();
1)

Hereiswhat Vi ews. Appoi nt nent s isresponsible for:
1. Rendering its own template (the template data not relevant to individual appointments)
2. lterating over Col | ecti ons. Appoi nt ment s

3. Creating new Vi ews. Appoi nt ment when anew appoi nt ment isadded to the collection
and appending that view’s DOM element to its own

4. Asking the view to remove itself when the model is removed from the collection
More importantly, note what Vi ews. Appoi nt ment s isnot responsible for:

1. Rendering individual appoi nt ment s

2. Listening to events on individual appoi nt ment s

3. Updating the individual appoi nt ment view

4. Removing the view when amodel is destroyed

Now that we have that sorted out, let’slook at Tenpl at es. Appoi nt nent and
Vi ews. Appoi nt nent :

Tenpl at es. Appoi ntnent = _.tenpl at e(
"<div class="title' >{{ title }}</div>" +
"<div class="date' >{{ date }}</div>"

)

55



Collection View

Warning

Try to keep javascript code out of templates. It isagood habit to pass a JSON-style
object to atemplate, not pass afull model to atemplate. The key point hereisto
pass key value pairs of JISON primitives like integers and strings, and not expect
functionsto be available. Avoid iteration by doing the iteration in the view and
creating subviews. Conditionals are subjective, if they are short it is OK, but as
they grow, consider subtemplates or subviews.

Vi ews. Appoi nt nent = Backbone. Vi ew. ext end({
tenpl ate: Tenpl at es. Appoi nt nent ,

initialize: function(options) {
_.bindAll (this, '"render', 'renove');
t hi s. nodel . bi nd(' change', this.render);
t hi s. nodel . bi nd(' destroy', this.renove);

}l
render: function() {

$(this.el).htm (this.tenplate(this.nodel.toJSON()));
return this;
}l

remove: function() {
$(this.el).renmve();

}
1)

Hereiswhat Vi ews. Appoi nt nent isresponsible for:

1. Rendering an individual appoi nt ment

2. Updating the view when the appoi nt ment changes

3. Removing the view when the appoi nt ment is destroyed

An interesting distinction between the dest r oy and r enove events can be observed here.

Both are causing the same effect in the view and in the DOM, but they are very different
events!

56



Collection View

The dest r oy event occurs when the model is deleted from the persistence system (the
server, or client storage, etc.). For example, we could have a button on our view called
"Delete". Or, mor e importantly, there could be abutton on an entirely different part of
our application that deletes models.

Consider aside-panel that has a button called "Remove all read appointments” that only
removes appoi nt rent modelsif they have ther ead attribute set. We could easily say,
"when the delete button is clicked, remove this element”. If we do that, we would have
to do that for every instance that a model is deleted in some way and would need to hook
it up to every view that displays that model. The power of eventsin Backboneisthat, by
binding to relevant events, we can avoid this duplication.

We also need to be aware of r enove actions, because we may be maintaining multiple
collections with the same set of models in them. Consider if we had all our appointments
inaglobal MyAppl i cati on. Appoi nt ment s, but then we created two sub-collections:

My Appl i cat i on. ReadAppoi nt nent s and MyAppl i cat i on. Unr eadAppoi nt nent s.

Any time aMdel . Appoi nt rent was marked asr ead or unr ead, we move it from one
collection to the other. In memory, those are the same Model . Appoi nt ment in the top-
level MyAppl i cati on. Appoi nt nent s and in the sub-collections.

If we had aVi ews. Appoi nt nent s for each of the sub-collections, we need to remove the
view elementson ar emove event, but the model is not deleted, just removed from the
collection. Since thisis a Collection View we are representing the state of the collection,
and must modify the view to mirror the collection’s state.

Tip

Alwaystry to use the most appropriate event when binding to an action. Don’'t
see the right event? We will cover firing and listening to custom eventsin alater
chapter.

7.4. Conclusion

The Single Responsibility Principleisjust asimportant in client-side Javascript asit is
in server-side code. It is an indication of good, object-oriented design that each entity
isresponsible for asingle task. The Collection View divides up the tasks of iteration,
interactivity, and output into separate objects, each with their own simple goals.

57



Chapter 8. View Signhature
8.1. Introduction

The View Signature pattern is aform of caching to prevent redraws in the browser. It helps
short-circuit unnecessary redraws by defining a cache key method and checking if the key
changes.

8.2. The Problem

Whenever aview isrendered, there are costs inflicted on the user:

1. The browser must render the view. This takestime and effort, evenif it isonly asmall
amount

2. The view will "blink" while the application empties the element and fillsit in with new
content

3. Scrolling can be interrupted if the view islong and the user has scrolled down into it

It is disturbing to see content blink on a page, and it is very annoying to have your
scrolling position change while using a site. In the worst, case, it may be impossible to
scroll the page because the view keeps being re-rendered. This behavior isundesirablein
any web application.

8.3. The Solution

There are two tactics for dealing with these problems, each with their own pros and cons.
Thefirst is View Signatures, which we will discuss here, and the second is Fill-In Views,
which we will discuss in the next chapter.

A View Signature avoids the rendering of aview when the output would be identical to
what is currently rendered. Often, events are fired in Backbone that may or may not be
relevant to the view. The view does not care to differentiate between different types of

58



View Signature

events (or different objects on which the event is fired) because that sort of computation
could be difficult, costly, and beyond the responsibility of the view.

The goal of aView Signatureisto simply and efficiently decide if the view is stale and
needs to be re-rendered.

8.3.1. What is a Signature?

A View Signature is a condensed representation of the contents of a view. It should
conform to the following rules:

1. Two views cannot have the same signature and also have different HTML output
2. Two views cannot have different signatures and also have the same HTML output

In thisway it is very much like a cache key for the contents of the view.

8.3.2. Sighature Module

First, let’s define a simple signature module we can use in our views to keep them cleaner:

Mbdul es. Si gnedVi ew = {
updat eSi gnature: function() {
newSi gnature = this.signature();
if (newSignature !==this._signature) {
t his. _signature = newSi gnat ure;
return true

}

return fal se;

}
}

The updat eSi gnat ur e method updates the signature if it has changed, calling

t hi s. si gnat ure(), which the class being mixed into needs to define. It will returnt r ue
if the signature changed and f al se if it did not change. Now we can include this module
into any view and all we haveto do is define si gnat ur e and short-circuit r ender if
updat eSi gnat ur e returns true. Now that we have that out of the way, let’slook at afew
signature methods.

59



View Signature

8.3.3. A Simple Example: MD5

The ssimplest example (other than the HTML of the view itself) isan MD5 hash of the
rendered HTML. The problem hereisthat, whileit is a very simple implementation that
prevents the view from being re-rendered, it is not very efficient. The inefficiency stems
from the view, which hasto be generated in its entirety in order to determineif it isthe
same. However, since it does accomplish the goal of avoiding are-render, it isalegitimate
solution (especially for an extremely complex view). Let’stake alook at what an MD5
signature for Vi ews. Appoi nt nent from the Collection View chapter looks like:

Vi ews. Appoi nt ment MD5 = Backbone. Vi ew. ext end( _. ext end({
tenpl ate: Tenpl at es. Appoi nt nent,
render: function() {
if (this.updateSignature()) {
$(this.el).htm (this.tenplate(this.nmodel.toJSON()));

}

return this;

b

signature: function() {
return hex_nmd5(this.tenplate(this.nndel.toJSON()));

}
}, Mbddul es. Si gnedVi ew) ) ;

Note

We are using the MD5 algorithm from http://pajhome.org.uk/crypt/md5/md5.html
by Paul "Pg" Johnston

This code generates an MD5 hash of the HTML. Wecall t hi s. updat eSi gnat ure() to
check if the signature has changed, if it has changed, we'll render the view.

The problem with the MD5, as previoudly stated, is that we need to render the view to
HTML to tell if we need to complete the rendering work. The higher up the rendering
chain we can push the logic, the more efficient our signature will be. Also, observant
readers may have noted that we need to render the template twice, based on how we
implemented the signature method and the signature module. We could use an interna
variable or some other mechanism to only render once, but the point of this signature was
simplicity, not speed, so wewon'’t get into it here.

60


http://pajhome.org.uk/crypt/md5/md5.html

View Signature

8.3.4. A Fast Example: Model Data

In this example, we use the data of the model to generate a signature. Thiswill be superior
to the MD5 method because we can abort the rendering of HTML by doing asimple string
comparison. The only caveat here is that we need to be sure that our view only depends on
model data, so anything passed into the template should be included in the signature.

Firgt, let’slook at our template:

Tenpl at es. Appoi ntnent = . tenpl at e(
"<div class="title >{{ title }}</div>" +
"<div class="'date' >{{ date }}</div>"

)

Aswe can see here, our template only dependsonthetit1 e and dat e attributes. So, let’s
define our signature so that it only depends on those attributes:

Vi ews. Appoi nt nent Dat a = Backbone. Vi ew. ext end( _. ext end({
tenpl ate: Tenpl at es. Appoi nt nent ,
render: function() {
if (this.updateSignature()) {
$(this.el).htm (this.tenplate(this.nodel.toJSON()));

}
return this;

}l

signature: function() ({
return |

this.model .get('title'),
t hi s. nodel . get (' date')
l.join(";");
}. Mbddul es. Si gnedVi ew) ) ;
This new method has two advantages:
1. We compute and compare the signature without rendering the template

2. We are not depending on an additional library for our signature computation (since we
are already using jQuery)

61



View Signature

Now, when the model changes, change events would fire for attributesliker ead or
favorite. Sinceweonly careabout tit| e and dat e, wewill not re-render the view
unless those attributes change. The trade-off here is that the programmer needs to keep the
signature in sync with the template.

Tip

An even simpler solution in this case would be to remove the binding of change to
render and replaceit with abind of change: tit| e and change: dat e to render.
That way, we only re-render when those attributes change. However, this solution
is limited to situations in which the template only depends on attributes and not
computed information performed by the view.

62



Chapter 9. Fill-In Rendering

O0.1. Introduction

Fill-In Rendering is aform of caching to minimize the amount of structural redraws
performed when updating the DOM by keeping the structure in the template and then
updating elements' contents with attributes from the models directly.

9.2. The Problem

Fill-In Rendering tackles the same problem as View Signatures. Whenever aview is
rendered the following costs are inflicted on the user:

1. The browser must render the view. This takestime and effort, even if only a small
amount

2. Theview will "blink" while the application empties the element and fillsit in with new
content

3. Scrolling can be interrupted if the view islong and the user has scrolled down into it

View Signatures handle this problem very quickly by short-circuiting rendering when
there is no change in the view. However, often data changes and views must be updated to
reflect new information. We still want to avoid flickering and scroll interruption, while at
the same time minimizing the amount of work the browser has to do. Thisiswhere Fill-In
Rendering comesinto play.

Tip

Fill-In Rendering and View Signatures handle the same problems, but they are not
mutually exclusive. In fact, they work very well together!

63



Fill-In Rendering

9.3. The Solution

Fill-In Rendering only updatesthe portions of the view that have changed, while
leaving the scaffolding of the view in place. This means that the DOM element should
not have itsHTML set as awhole. Instead the dynamic attributes will have HTML set
individually.

Hereisthe origina template and render method for an Appoi nt nment :

Tenpl at es. Appoi ntnent = . tenpl at e(
"<div class="title >{{ title }}</div>" +
"<div class='date' >{{ date }}</div>"

IE

Vi ews. Appoi nt nent = Backbone. Vi ew. ext end({
tenpl at e: Tenpl at es. Appoi nt nent ,

initialize: function(options) {
_.bindAll (this, 'render');
t hi s. nodel . bi nd(' change', this.render);

}

render: function() {
$(this.el).htm (this.tenplate(this.mdel.toJSON()));
return this;

}
)

Note how any time the view isrendered, theti t | e and dat e <di v> tagswill be recreated
and reset on the DOM element to which the view is bound. Thisis not too bad for

Vi ews. Appoi nt ment , but consider if there was a small static description of what a
appointment was and its significance. Every time we have to re-render a bunch of
appointments, that text would be reset, which would cause all the divs to bounce up (as the
text was removed) then spring back down as they are individually popul ated.

Let’stake alook at how we would implement Fill-In Rendering on Vi ews. Appoi nt nent :

Tenpl at es. Appoi ntnent = _.tenpl at e(
"<div class="title'></div>" +
"<div class='date' ></di v>"

)

64



Fill-In Rendering

Vi ews. Appoi nt nent = Backbone. Vi ew. ext end({
tenpl ate: Tenpl at es. Appoi nt nent ,

initialize: function(options) {
_.bindAll (this, 'render');
t hi s. nodel . bi nd(' change', this.render);
$(this.el).htm (this.template());

b

render: function() {
this.$('.title').htm (this.nodel.get('title'));
this.$('.date').htm (this.nodel.get(' date'));
return this;

}
1)

First, we have modified the template such that it no longer renders any dynamic
information. It only fillsthe HTML structure of the view. Second, we have rendered the
HTML of the template during initialization. Third, when asked to render, we ssimply fill in
titleanddate.

Y ou may be asking yourself, "why isit OK to render during initialization?' On
initialization Backbone creates an element, el , not attached to the DOM for us to
manipulate when the view isinitialized. It isagood practice to have the caller of aView
be responsible for attaching the element to the DOM, and it will do so after it has also
called render. Now, subsequent callstor ender on achange event only modify the
properties of the DOM that are dynamic.

9.4. A Quick Refactor

Now that we have the Fill-In Rendering pattern defined, let’s ook at how we might
refactor it:

Modul es. Fi l | I nVi ew = {

filllnAttributes: function() {
_(this.filllnBindings).each( function(value, key) {
this. $(key).htm (this.nnodel.get(value))
}, this);
}

b

65



Fill-In Rendering

Vi ews. Appoi nt nent | nt rospect = Backbone. Vi ew. ext end( _. ext end({
tenpl ate: Tenpl at es. Appoi nt nent ,

filllnBindings: {
"Ltitle' : 'title',
'.date': 'date'

b

initialize: function(options) {
_.bindAll (this, 'render');
t hi s. nodel . bi nd(' change', this.render);
$(this.el).htm (this.template());

}l

render: function() {
this.filllnAttributes();
return this;

}

}, Modules.FilllnView));

With that, all we haveto doisdefineafill|nBindi ngs object on the view such that
the keys are jQuery selectors and the values are model attributes. Then we can call
filllnAttributes toupdate the view with the newest information.

Warning

In the examples in this section, we use nodel . get . Thisisonly for data that
isalready javascript and HTML-safe. If you are rendering user data, use
nodel . escape.

9.5. Conclusion

Implementing the Fill-In View pattern results in less page blink, less scrolling interruption,
and faster render times. It also lets us use animations to transition changes in elements,
which we will cover more in Chapter 10, Actions and Animations. Keep in mind that like
any caching strategy, this pattern has its trade-offs. Pure templating isa simpler solution
and therefore is less prone to devel oper error.

66



Chapter 10. Actions and Animations
10.1. Introduction

Due to Backbone' s evented nature, Actions and Animations are handled differently during
the course of manipulating objects. In this chapter we cover how to bind animationsin
common scenarios.

10.2. The Problem

Consider avery common feature of many web applications. when something is deleted or
removed, its Ul element fades away or zips up into nothing. Normally this isimplemented
by daisy-chaining the Ul element removal action to the delete action. Here is an example

in jQuery:

$. aj ax({
url: "/objects/"+object.id,
type: ' DELETE ,
success: function() {
$(' obj ect-' +obj ect.id).fadeCut (250);
}
1)

We could adapt this exact process pretty easily in Backbone, hereis an example of the
wrong way to fade out the view:

/* Hey this code is a bad idea, so don't copy it! */
appoi nt nent . dest roy({success: function(nodel, response) {
$(nodel . view. el ). fadeCQut () ;

1)

Thislooksreally similar to our jQuery solution, so what’s wrong with it?

First, fading out the view is not dependent on the destroy call finishing—it is dependent on
the model actually being deleted client-side, which will be conveyed by its state. Second,
the model should not have areference to its view. Thisis acommon shortcut that causes a

67



Actions and Animations

lot of unidiomatic backbone code. The view should handle any of its actions based on the
model’s state.

Warning

If you are using callbacks on Backbone actions, you’re doing it wrong! There
are afew rare exceptionsto this rule, but you should think twice before using a
callback.

10.3. The Solution

From auser’s perspective the action of deleting an item and seeing it go away are tightly
intertwined. However, are these actions truly directly related? Actualy, thereisan
alternate view of the situation that is much more aligned with how Backbone operates:

1. We ask the server to delete the object, it responds OK

2. The object is updated and is marked as deleted (client-side by Backbone' s sync on the
model)

3. The Ul element is removed because its model was del eted

As server-side programmers, we are always drawn to the fact that the server said OK,
confirming the object was deleted. However, from the client-side perspective, we do not
care what the server says—we just care about the state of the object. Therefore instead of
daisy-chaining the removal of the Ul element after the successful response from the server,
we will bind the removal of the Ul element to the change in the model.

Let’s see what it would look like to modify our Appoi nt ment Vi ew S0 that when we delete
an appointment, it fades out the view:

68



Actions and Animations

Vi ews. Appoi nt nent = Backbone. Vi ew. ext end({

events: {
"click .delete": "delete"

}l

tenpl ate: Tenpl at es. Appoi nt nent ,

initialize: function(properties) {
_.bindAll (this, "render', 'renpove', 'delete');
t hi s. nodel . bi nd(' change', this.render);
t hi s. nodel . bi nd(' destroy', this.renove);

}l

render: function() {
$(this.el).htm (this.tenplate(this.nodel.toJSON()));
return this;

}l

renove: function() {
$(this.el).fadeQut (250);

}l

del ete: function() {
t hi s. nodel . destroy();

}
1)

Pretty ssimple! Now, any time an object is removed, we fade out the element instead of just
removing it.

In amore traditional web application, we might have half a dozen places where an object
is deleted. Thiswould require an update to each one with the new behavior. But in
Backbone, the deletion of the object is announced with an event to which any object can
listen.

Let’stake alook at another possible evented change: marking an Appointment as a
favorite:

69



Actions and Animations

Vi ews. Favorit eAppoi nt nent = Backbone. Vi ew. ext end({
events: {
"click .set-favorite": "setFavorite"

b

tenpl ate: Tenpl at es. Appoi nt nent ,

initialize: function(properties) {
_.bindAll (this, "render', 'setFavorite', 'updateFavorite');
t hi s. nodel . bi nd(' change', this.render);
t hi s. nodel . bi nd(' change: favorite', this.updateFavorite);

} 1

render: function() {
$(this.el).htm (this.tenplate(this. mdel.toJSON()));
return this;

} 1
set Favorite: function() {
t hi s. nodel . save({favorite: (!this.nodel.get('favorite'))});

} 1
updat eFavorite: function() {
$(this.el).toggl ed ass('favorite', this.nodel.get('favorite'));

}
1)

First off, we describe an event. When a user clicksa DOM element with the class
favorite, wewant to run theset Favori t e method. set Favori t e will toggle the model’s
favorite status. Now, look at the initializer: we are binding a change on the favorite
attribute to run the updat eFavor i t e method. updat eFavori t e isgoing to toggle a CSS
class on the element to mark it as afavorite or not.

The most important and relevant thing to note in this code is that the save call to modify
the model does not have a callback. We have bound all our functionality to events. Thus,
we have fully decoupled the operation and its effects.

10.4. Conclusion

Decoupling actions and outcomes is the Backbone Way. Cleaner and less coupled

code arises from removing dependencies between objects, and allowing objects to pass
messages to each other. In Backbone, message passing is handled through events, and
the best way to decouple Backbone objectsisto expose a clear API of eventsto which
concerned objects can bind themselves. Aswe have seen in this chapter, using events to
pass messages Yields clean and flexible code when dealing with animations.

70



Chapter 11. Reduced Models and
Collections

11.1. Introduction

Reduced Models and Collectionsis a pattern that describes how to maintain and
display aggregated data cleanly by creating meta-models and collections that represent
computations performed on the first-class data objects of an application.

11.2. The Problem

Oftentimes you will find yourself wanting to aggregate information for display by
Backbone views. The best approach for doing this might not be obvious at first. By
leveraging the law of separation of concerns, it is possible to come up with an elegant,
maintai nabl e solution.

For this recipe, consider a calendar application backed by a server with a standard
RESTful endpoint for Appoi nt ment s. We already have the calendar working—creating
appointments, displaying them on the calendar, deleting them, and updating them works
just fine. Now we want to make a calendar sidebar that has output that includes:

o January (4)

February (2)

March

April (7)
e gtC...

All of the information required to render this sidebar is already available. It is sitting in our
collection and models. So let’s explore a couple of approaches to get this done.

71



Reduced Models
and Collections

11.3. The Solution
11.3.1. Simple Solution: A View

The easiest thing to start with is a (somewhat) smple view like this:

/* Note: this code may not run. As it is not the ideal solution
it has not been thoroughly tested. */
Vi ews. Mont hCount Vi ew = new (Backbone. Vi ew. ext end({
initialize: function() {
this.collection.bind('all', this.render);
_.bindAl'l (this, 'render');
e
render: function() {
$(this.el).emty();
var months = this.collection.reduce(function(nmeno, appointment) {
var nont hNunber = appoi nt nent. get (' nont hNunber') ;
i f (!meno[mont hNunmber]) {
meno[ nont hNunmber] = O;
}
meno[ nont hNunber ] ++;
return neno;

b

_(_(rmont hs) . keys()).each(function(nmont hNunber) {
var nmont hName = MyCal endar . Nunber ToMont hNane( nont hNunber) ;
var count = nont hs[ nont hNunber] ;
if (count > 0) {

$(this.el).append(’<li>"+nont hName+' (' +count+')</1i>");
} else {
$(this.el).append('<li> +nont hNane+' </1i>');
}
1)

}))({el: $('#rmonth-count'), collection: M/Cal endar. Appoi nt nents});

Let’swalk through this code. In the initializer we are watching the collection. Whenever
anything changes we re-render our Mont hCount Vi ew. We are using an Instantiated View
pattern here since we bind to aDOM id of nont h- count .

Inr ender , we reduce the appointments to an object that will look like this:

72



Reduced Models
and Collections

The key of this data structure is the month number. The value is the number of
appointments in that month.

Next, we iterate over the keys (the nont hNunber ) and exchange the nont hNunber (e.g.
1) for anont hNane (e.g. "January™). The Nurber ToMont hName method, which is defined
elsewhere in our app, handles this for us. Next, we grab the count from our reduced object.

Lastly, we generate our string and append it to our view. We append | i €lements under the
assumption that #rmont h- count isaul element.

Some observations about this solution:
1. It works. This does solve our requirement of having a month count list.

2. Thereisalot of non-view code in this view. We access a collection that does not
directly pertain to the view being rendered. We are accessing the Appoi nt nent s
collection but we are not rendering Appoi nt ment s. That is a Backbone code smell.

3. Thereare only 6 lines of view code. When we empty the element and when we fill it
with1i elements.

4. Our reduced datais only accessible within this view. This are no means for anything
else in the application to access the per-month count. If another view needed this
information, it would be forced to calculate it itself, violating the DRY principle 1

5. The reduced datais not in the form of objects, but as pure JISON with an implicit
structure, which makesiit brittle.

11.3.2. Better Solution: A Reduced Collection

Y ou might have noticed that thisis a Collection View. We are rendering a Collection of
aggregated Mont hCount objects. So what we really want to do isimplement the Collection

73



Reduced Models
and Collections

View pattern with a Collection of Mont hCount models, aMont hCount s view, and a
Mont hCount view. Let’stake alook at each of these pieces from the bottom up.

The model isjust going to be a storage system for attributes and a source of appointments:

Model s. Mont hCount = Backbone. Model . ext end() ;

The Collection is where things get interesting. We define ar econput e method whose job
isto reduce Appoi nt nent s down to a collection of Mont hCount models:

Col | ecti ons. Mont hCount s = Backbone. Col | ecti on. ext end({
nodel : Mdel s. Mont hCount ,
initialize: function(nodels, options) {
this.collection = options.collection
this.collection.bind('all', this.reconpute);
_.bindAll (this, 'reconpute');
this.reconpute();
(¥
recompute: function() {
this.reset(_.map(_.range(0,12), function(nonthNunber) ({
var count = this.collection.select(function(nodel) {
return nodel . get Mont h() === nont hNunber
}) .1 ength;

return {
nont hNane: Mbdel s. Appoi nt ment . nunber ToMont h( nont hNunber) ,
count: count

}
}, this));

}
)

We iterate over each month number, finding al of the appointments for this month and
counting them, then we return an object in the following format:

[

{ont hNanme: "January", count: 4},
{ont hName: "February", count: 2},
{ ront hNanme: " March", count: 0},
{ont hName: "April", count: 7}
[* etc */

74



Reduced Models
and Collections

That array is passed directly to ther eset method on the Mont hCount s collection to empty
it out and populate it with models with those attributes.

Thisisanice encapsulation of the reduction into a Collection. It only deals with the
collection it was initialized with, the models in that collection, and Mont hCount model.
There is absolutely no view code here at all.

Let’stake alook at what the Mont hCount sVi ew looks like:

Vi ews. Mont hCount s = Backbone. Vi ew. ext end({
initialize: function() {
this.collection.bind('all", this.render);
_.bindAll (this, '"render');
b

render: function() {
$(this.el).enpty()
this.collection.each(function(nmonthCount) {
$(this.el).append(
(new Vi ews. Mont hCount ({nodel : nmont hCount})).render().e

);

}, this):
}

1)

Thisisastraightforward Collection View. We initiaize it with a Mont hCount s collection,
to which it binds all the appointments on the collection to render. Rendering empties

out our div and fillsit with the DOM elements of Mont hCount views for each of the

Mont hCount modelsin our collection.

Thisis abeautiful separation of concerns. All that Mont hCount sVi ewworries about is
aggregating subviews for its collection. There are no reductions being done. There is not
even any templating!

Next, let’s look at the view for the Mont hCount :

75



Reduced Models
and Collections

Vi ews. Mont hCount = Backbone. Vi ew. ext end( {
tagNanme: 'Ii",
render: function() {
var text = this.nodel.get(' nonthNane');
if (this.nmodel.get('count') > 0) {
text += " ("+this.nodel.get('count’')+")";

}
$(this.el).text(text);
return this;

}
1)

Thisview is solely responsible for turning a Mont hCount model into its HTML
representation. Again there is no reduction or any reference to any other model or
collection other than the one that we explicitly render here.

Finally, hereis the code used to bootstrap this application:

$(function() {
var appoi ntnments = new Col | ecti ons. Appoi nt nent s( [
{title: 'Doctor Appointnent', date: '2011-01-04'},
{title: "Birthday Party', date: '2011-01-07'},
{title: 'Book Club', date: '2011-02-14'}
1)

var nonth_counts = new Col | ecti ons. Mont hCount s(
[T, {collection: appointnents}

) ’
(new Vi ews. Mont hCount s( {

col l ection: month_counts, el: $('#nonth-counts')
})).render();

1)

11.4. Conclusion

Although our original solution required fewer lines of code, there are severa benefits of a
Reduced Models and Collection approach:

1. itisre-usablein other areas of the application

76



Reduced Models
and Collections

2. itismuch cleaner and more readable in itsindividual parts
3. itismade of components that have limited concerns

The most important goal achieved by restructuring our solution isthat every individual
component performsonly a single task. The Mont hCount sVi ew only generates

Mont hCount Vi ew views from the Mont hCount s collection. The Mont hCount s collection
only reduces Appoi nt nent s into Mont hCount models. The Mont hCount view only renders
aMnt hCount to HTML. If we need to fix a bug, we know exactly where to look and we
know that the extent of the bug will be limited to the object that isfailing to perform its
duty.

77



Chapter 12. Non-REST Models

12.1. Introduction

The Non-REST Models pattern covers how to introduce actions into Backbone model s that
cannot use the default save method because the server isnot purely REST-ful.

12.2. The Problem

Most web devel opers would agree that REST is the way to go for clear and accessible
APIs. Inredl life, however, we are often treated to APIs that are anything but easy to use.
Sometimes we have to interact with alegacy system, or some special route in our system
has to be different in one way or another. Let’slook at a couple of situations we might find
ourselvesin and how to handle them in Backbone.

12.3. The Solution
12.3.1. Special Action

Let’s consider our Calendar application again. Our Appoi nt ment s are RESTful, except for
one new action: publ i sh. Instead of publishing an Appoi nt nent appointment by saving

it with publ i shed: true, we haveaspecial routein our System/ appoi nt nent s/ <i d>/
publ i sh to which we need to POST.

In asituation like this, we ailmost always want to use the normal save() method. For the
usual cr eat e and updat e, things should flow through Backbone' ssave() . But, for our
"specia” API call, we create a separate method:

78



Non-REST Models

Model s. Appoi nt ment = Backbone. Model . ext end({
/[* the rest of the nodel is normal */
publish: function() {

var nodel = this;
var options = {}
options.url = this.url() + '/publish';

options.data = {};
options. success = function(resp, status, xhr) {
nodel . set ({publ i shed: true});
}i
return (this.sync || Backbone.sync).call(this, 'create', this, options);

}
1)

We define apubl i sh method on the model that creates the appropriate Backbone. sync
request. We set theur | to include atrailing / publ i sh. Our Appoi nt rent model’surl is
normally / appoi nt nent s/ <i d> so we turn that into / appoi nt nent s/ <i d>/ publ i sh

Next, we explicitly set dat a to an empty object so as not to confuse the server with the
model parameters, which sync would send for us by default. The last option isasuccess
callback to set the model’ s publ i shed attribute to true if the call succeeds.

Thefinal lineis either calling this model’ s overridden sync method or Backbon€e' ssync
method. We have not overridden sync, but it isagood practice to include this check to
future-proof code (hint: we do it in this chapter). Calling the sync method with thecr eat e
action will be tranglated to POST. In addition to the action, we also pass the usual model
and options argumentsto sync.

Tip

When we set out to tackle this problem, we could have simply called jQuery
directly instead of using Backbone' ssync. It may have been quicker in the short
term, but it is generally agood ideato try to stick to the norm so that future code
can continue to follow Backbone' s practices. For example, by calling set , the
event change: publ i shed will now be fired after this completes. By using ur 1 ()
the publ i sh method will change with the model if the mainur | changes.

79



Non-REST Models

12.3.2. Special Persistence Layer

By default, Backbone' ssync uses jQuery to make HTTP requests to aremote RESTful
resource. But what if we wanted to change this around entirely and just use HTML5 local
storage? Luckily, since al persistence is done through Backbone. sync, all we haveto do
isoverride that method for each case. In fact, the awesome folks at DocumentCloud have
aready written a Backbone local storage module 1

Rather than introducing an alternate scenario and solution and explaining how to achieve a
special persistence layer in that fashion, let’s walk through DocumentCloud’ s solution and

explain how it fitsin to the big picture. This discussion won't cover how the Local Storage
module is implemented—only how they replace Backbone. sync in order to store datavia

their module:

[* Source code from
* http://docunentcl oud. gi t hub. coni backbone/ docs/ backbone- | ocal st or age. ht m
*/

Backbone. sync = function(nmethod, nodel, options) {

var resp;
var store = nodel .| ocal Storage || nodel.collection.local Storage;

switch (nethod) {

case "read": resp = nodel .id ? store.find(nmodel) : store.findAl();
case "create": resp = store.create(nodel);
case "update": resp = store.update(nodel);
case "delete": resp = store.destroy(nodel);
}
if (resp) {
options. success(resp);
} else {
options.error("Record not found");
}

b

There are four possible methods for sync:

1The Backbone local storage module can be found at: http://documentcl oud.github.com/backbone/docs/backbone-
localstorage.html

80

brea
brea
brea
brea


http://documentcloud.github.com/backbone/docs/backbone-localstorage.html
http://documentcloud.github.com/backbone/docs/backbone-localstorage.html

Non-REST Models

1. read: find amodel by id or retrieve al the models

2. creat e: create amodel with the given attributes and set the model’si d on success
3. updat e: update the given model’ s attributes

4. del et e: delete amodel from the storage layer

In each of these cases, we delegate to the local storage module to perform the
corresponding action. To support Backbone, a storage solution only needs to support these
four actions and return either a success or failure response.

Notice that there are no mentions of firing eventsin this code. Thisis because events are
fired above the sync method in the caller. So, for an updat e, the caller would be the save
method, which looks like this:

/* Set a hash of nodel attributes, and sync the nodel to the server.
* | f the server returns an attributes hash that differs, the nodel's
* state will be “set” again.

*/

save : function(attrs, options) {
options || (options = {});
if (attrs & !this.set(attrs, options)) return false;
var nodel = this;
var success = options.success;
options. success = function(resp, status, xhr) {

i f (!nopdel.set(nodel.parse(resp, xhr), options)) return fal se;

i f (success) success(nodel, resp, xhr);

} ’

options.error = wapError(options.error, nodel, options);

var nmethod = this.isNew() ? 'create' : 'update';

return (this.sync || Backbone.sync).call (this, nethod, this, options);

}

Notice how save looksalot like our publ i sh method? Thisis because we modeled our
publ i sh method after the save method! All save doesis set the attributes to the model,
call sync, and signal success or failure. On success, it sets the response from the server to
the model. On failure, it runs the error callback or triggersthe err or event. By stacking
very simple layers on top of each other to form models, Backbone allows us to override
any section along the way to suit our needs.

81



Non-REST Models

Tip

Y ou can override the sync method on just one particular model, or even just one
instance of amodel, or a collection, or an instance of a collection. Thisis useful if
most models are RESTful and afew are not. Or if most models are server-side, but
some models are kept client-side.

12.4. Conclusion

Exceptional cases always occur, and the true strength of any framework is how it handles
going off the beaten path. Backbone is an effective tool to be used when it fits the RESTful
task at hand, but that is not always the case. Luckily, through methodslike sync, set , and
save, it iseasy to circumvent Backbone' s naturally RESTful style without having to do
any monkey-patching. Do not be afraid to step outside the realm of Backbone and write
"plain old javascript." When your application’s behavior does not fit with Backbone's
style, go your own way (but try to maintain interoperability).

82



Chapter 13. Changes Feed
13.1. Introduction

The Changes Feed pattern provides a lightweight way of keeping your datain sync with
the server by applying differences as opposed to reloading data.

13.2. The Problem

The user of aweb application is not always the only person (or thing) modifying the
underlying data. For example, in our calendar application, multiple users could be
modifying appointments on the calendar at the same time. An obvious solution to this
issue would be periodically running f et ch on our collections to make sure they are up-to-
date. However, this solution has afew problems because afull fetch may:

1. Beaslow operation on the server

2. Re-render alarge number of views

3. Incur alarge amount of client-side processing

4. Disrupt the browser with alarge number of changes

A much better solution would be a changes feed that will only send what has changed
since the last time we checked.

13.3. Changes feed on a Collection

Since Collections are responsible for adding, changing, and destroying Models, they are an
ideal place for achangesfeed. Let’slook at how we would implement a changes feed for
our calendar:

83



Changes Feed

Col | ecti ons. Appoi nt ment Changes = Backbone. Col | ecti on. ext end( {
nodel : Mddel s. Appoi nt ment ,
url: "/appointments",
initialize: function(nodels, options) {

_.bindAll (this, 'changes', 'processChanges’', 'processChange',

this.collection = options.collection
this.bind('reset', this.processChanges);
set I nterval (this.changes, 15*1000);

b

since: function() {
return this.collection.max(function(appoi ntment) {
return appoi nt ment. get (' updated_at');
1)
b

changes: function() {
this.fetch({ data: { since: this.since() } });

b

pr ocessChanges: function() {
t hi s. each(thi s. processChange) ;

b

processChange: function(appoi ntnent) {
var existing = this.collection.get(appointnent.id);
if (existing) {
if (appointment.get('deleted )) {
this.collection.renmove(existing);

} else {
exi sting. set (appoi ntnent. attri butes);
}
} else {
this.coll ection. add(appoi nt nent)
}
}
)

'since');

First of al, we're setting the URL to the same as the url for Cal endar . Appoi nt nent s, but

when we fetch changes we' re passing a since parameter:

84



Changes Feed

Col | ecti ons. Appoi nt ment Changes = Backbone. Col | ecti on. ext end( {
nodel : Mddel s. Appoi nt ment ,
url: "/appointments",
changes: function() ({
this.fetch({ data: { since: this.since() } });

b
/1

1)

The URL inthiscollection isjust anormal i ndex call on the/ appoi nt ment s route. We're
passing the since parameter to fetch so that the server can send change objects instead of
the full index. Our implementation here depends on a change object |looking exactly like
anormal object in the case of an addition or update, and with del et ed: trueincaseof a
deletion.

The si nce method ssimply gets the maximum updat ed_at timestamp from al of our
appointments and sends that to the server.

since: function() {
return this.collection.max(function(appointment) {
return appoi ntment. get (' updated_at');

1)
}

If we have no appointments, si nce will be' ' . In that case, the server will treat it like a
normal index call.

We also setup a 15 second interval to call the changes method. Thus, we are continuously
polling the server for changes:

initialize: function(nodels, options) {
_.bindAl I (this, 'changes', 'processChanges', 'processChange', 'since');
this.collection = options.collection
this.bind('reset', this.processChanges);
set I nterval (this.changes, 15*1000);

}

If the polling call emitsar eset event, we run the pr ocessChanges method.

At this point, our changes collection is popul ated with a bunch of Appoi nt ment objects.
These appointments represent Appoi nt nent s that have changed since the timestamp.

85



Changes Feed

The pr ocessChanges method is simply an iterator that calls pr ocessChange on each
Appoi nt ment .

processChange: function(appoi ntnent) {
var existing = this.collection.get(appointnent.id);
if (existing) {
i f (appointment.get('deleted )) {
this.collection.renpve(existing);
} else {
exi sting. set (appoi nt nent. attri butes);

} else {
this.coll ection. add(appoi nt nent)

}
}

pr ocessChange performs the following actions:
1. Search the main collection to see if we already have the Appoi nt nent in our system

2. If we have the Appoi nt ment , check to seeif it has been deleted (we would implement
this server side with adel et ed boolean), and if it has, remove if from our main
collection

3. If it has not been deleted, set its attributes to the new ones from the server, because
some attribute change has occurred

4. If we do not have an existing Appoi nt ment , it meansit is new and needs to be added to
our collection

The great thing about this changes feed isthat it is so ssmple. All we havetodois
propagate the change to a corresponding add, updat e, or dest r oy call on the model
or collection. None of our code needs to know that a changes feed even exists! Also,
Appoi nt nent Changes only needs to know about the collection it’ s instantiated with—
nothing about views, the router or anything else!

13.4. Conclusion

Asin Chapter 12, Non-REST Models, sometimes we need to step outside of Backbone's
RESTful roots to extend our application. Case in point is the Changes Feed, in which a

86



Changes Feed

Backbone collection is not representing data directly. Rather it isakind of metadata: a
collection of change objects. Collections and models do not have to correspond directly
with a database table on the server. On the contrary, some of the most powerful and
intriguing uses of collections and models are driven by metadata and interact with first-
class data objects as a result.

87



Chapter 14. Pagination and Search
14.1. Introduction

Pagination and Search is a set of recipes that provide an easy way to display and navigate
alarge amount of information quickly viaa user defined-query or by dividing data across

pages.

14.2. The Problem

There comes atimein any application’s life when thereis just too much content to display
at one time. Two tactics for displaying more targeted information to a user are pagination
and search. Search is afeature where a user provides a query and the server sends back

all of the objects that match that particular quer y. Pagination is when the server will only
present a certain number of elements at atime (known as the per _page number) and the
user can then navigate to the next page. Often, these two features are found together as a
search results page that is paginated.

The simplest solution would be to retrieve al of the data from the server and then perform
the pagination or search on the client-side. This can work up to a certain point, but
performance becomes an issue on both the client and the server.

Alternatively, we can do the pagination and search on the server, which can be optimized
with indexes on the persistence solution. This allows usto only retrieve the exact number
of elements needed to the client, right when they want it. In Backbone, both pagination and
search are implemented in a Collection in avery similar manner. Let’ s take alook.

14.3. The Solution
14.3.1. Search

Search isthe easier of the two features, so we start there. In search, a user often asks for
a standard index route with with an additional q parameter, representing a query. For
example:

88



Pagination and Search

http://exanpl e. com wi dget s?g=br own

This URL would return us widgets that matched the query br own. We would expect to
receive the same sort of object that would be returned from the plain wi dget s url. In
Backbone, we need to modify our ur | parameter on a collection to retrieve objects that
match a user-given query. Let’slook at what our Appoi nt ment sCol | ect i on would look
like if we wanted to show only appointments that matched the query conf er ence:

MyCal endar . Conf er enceAppoi nt nent sCol | ecti on = new (Backbone. Col | ecti on. ext end({
nodel : Mbdel s. Appoi nt ment ,
url: '/event s?g=conference'

1)0O);

Now we have a Conf er enceAppoi nt nent sCol | ect i on that only contains appointments
that match the query conf er ence. Clearly thisisonly useful if our users only search for
conferences. Let’s modify this so that the url can be dynamic based on a query:

MyCal endar . Appoi nt nent sCol | ecti onSearch = new (Backbone. Col | ecti on. ext end({
nodel : Mbdel s. Event,
url: function() ({
if (this. _query) return '/appoi ntnents?qg="+this. _query;
el se return '/appoi ntnments’;
b
query: function(qg, options) ({
this. query = escape(q);
this.fetch(options);
b
all: function(options) {
this. _query = fal se
this.fetch(options);
}
)0

Now we can search for conferences by running

My Cal endar . Appoi nt ment sCol | ecti on. query(' conference') and then later reset it
by running MyCal endar . Appoi nt ment sCol | ecti on. al | () . After setting or resetting
our query we will automatically fetch the collection, which will fire the collection’s
appointments. In turn, thiswill trigger the appropriate views to be re-rendered, displaying
all of the new data.

89



Pagination and Search

Tip
If your ur| isalready afunction, you can use a practice called Currying to

dynamically define the function with the search parameter mixed in. Check out this
Wikipedia article on currying [http://en.wikipedia.org/wiki/Currying:].

14.3.2. Pagination

Pagination isreally a specific case of search. Instead of asking for a query, however, we
ask the user for apage. Often, thisis done by providing links on our view with a Next and
Previous button to change pages. Let’slook at how we can tie a pagination view to our
collection by first examining our paginator:

$(function() {
My Cal endar . Pagi nat or Si npl e = new (Backbone. Vi ew. ext end( {

tenplate: _.tenplate("<span cl ass='prev' >Previ ous</ span><span cl ass=' next' >
events: ({
‘click .prev': 'previous',
"click .next': 'next
(¥
initialize: function() {
_.bindAll (this, '"previous', 'next', 'render');
(¥

render: function() {
$(this.el).htm (this.tenplate());
return this;

H
previous: function() {
this.trigger('previous');

¥
next: function() {
this.trigger(' next');

}
}))({el: '#paginator'}).render();
1)

The paginator is an Instantiated View. It has a Next and Previous span that are linked to
methods that simply fire methods of the the same name. This means that the paginator it
just arelay for user interaction.

Next, lets ook at our collection:

90


http://en.wikipedia.org/wiki/Currying:
http://en.wikipedia.org/wiki/Currying:

Pagination and Search

MyCal endar . Appoi nt nent sCol | ect i onPagi nat ed = new ( Backbone. Col | ecti on. ext end({
nodel : Mddel s. Appoi nt ment ,
url: function() {
return '/appoi nt ment s?page="' +t hi s. _page;
}l
initialize: function() {
_.bindAl Il (this, 'nextPage', 'prevPage', 'setPage');
this. page = 1;
}l
next Page: function() ({
t hi s. changePage(1);
}l
prevPage: function() ({
t hi s. changePage(-1);
}l
changePage: function(delta) ({
this.set Page(this. page + delta);
}l
set Page: function(page) {
thi s. _page = page;
this.fetch();
}
)0

The collection has a dynamic url that is set viaafunction. We keep an internal _page
variable and provide functions to change the page by incrementing or decrementing it.
When the page is changed, we fetch the collection.

At this point, all that remainsis to wire these two objects together:

MyCal endar . Pagi nat or . bi nd(
‘next', MyCal endar. Appoi nt ment sCol | ecti onPagi nat ed. next Page
)i
MyCal endar . Pagi nat or . bi nd(
' previous', MCal endar. Appoi nt nent sCol | ect i onPagi nat ed. pr evPage

)

When the user clicks Next the paginator firesanext event, which we bind to the

next Page method on the collection. We may want to add a bit to these objects to make
the user experience alittle better. For example, we could output the current page in the
collection’ s view so that the user knew relatively where they where. We could also have

91



Pagination and Search

the paginator listen to achange: page event on the collection and display the page number
with the Next and previous controls. Thisis|eft as an exercise to the reader.

Lastly, acommon feature of paginatorsisto show the total number of pages. This should
be done as a separate call to the server, as including this metadata in the collection fetch
would be confusing and hard to extract. A simple page metadata model might look like
this:.

MyCal endar . Appoi nt nent Pages = new ( Backbone. Mbdel . ext end( {
url: ' /appoi nt ment s/ pages

)0

We would implement this server route to return a metadata object in a structure such as:
{ pages: 42, per_page: 10 }

Next, we create a PageVi ew to represent a single page:

Vi ews. PageVi ew = Backbone. Vi ew. ext end({
tagName: 'span',
cl assNane: ' page',
events: { 'click': 'page' },
initialize: function(options) {
this. page = options. page;
_.bindAlI (this, 'page');
b
page: function() {
this.trigger(' page', this. page);
b
render: function() {
$(this.el).text(this._ page);
return this;
}
1)

The PageVi ew renders a single page and fires a custom page event when it is clicked. We
pass the page number in to itsinitializer and attach it as an event argument when we fire.
Next we update our Paginator to follow the Collection View pattern:

92



Pagination and Search

$(function() {
MyCal endar . Pagi nat or = new (Backbone. Vi ew. ext end( {

tenplate: _.tenplate("<span cl ass='prev' >Previ ous</ span><span cl ass=' pages
events: {
"click .prev': 'previous',
‘click .next': 'next
b
initialize: function() {
_.bindAll (this, 'previous', 'next', 'page', 'render');
t hi s. nodel . bi nd(' change', this.render);
b

render: function() {
$(this.el).htm (this.template());
_(this.nodel.get('pages')).chain().range().each(function(page) ({
var view = new Vi ews. PageVi ew { page: (page+l)});
this.$('.pages').append(view render().el);
vi ew. bi nd(' page', this. page);
}, this);
return this;
}l
previous: function() {
this.trigger (' previous');
}l
next: function() ({
this.trigger(' next');
}l
page: function(page) ({
this.trigger(' page', page);
}
})) ({el: '#paginator', nodel: MCal endar. Appoi nt ment Pages}).render();

1)

The Paginator now takes a model that represents the page metadata. Whenever the
metadata model changes we re-render the paginator. The render method here is the same
asthe Collection View pattern, except we bind the page event on the subview to our own
page method, firing our own page event. By coal escing the events of the subviews into
this one event on the paginator, we can use our collection’s set Page method to set the
collection to a specific page and simply bind our paginator’ s page method directly to
setPage:

93



Pagination and Search

MyCal endar . Pagi nat or . bi nd(
' page' , MyCal endar . Appoi nt ment sCol | ecti onPagi nat ed. set Page

)i

Because the page event fires with a single argument representing the page, and the

set Page method expects one argument representing the page, we can wire these two up
directly. Now, whenever a user clicks the page number, it will update our collection’s
route and fetch it.

Warning

We did not restrict the page number to the bounds of the page metadata returned to
the server. A user could continue to click next Page and go beyond the max page
and get empty pages. It would be a good ideato stifle the triggering of the page,
next , and pr evi ous events on the Pagi nat or if the pageisout of bounds.

14.4. Conclusion

Similar to Chapter 13, Changes Feed, we are creating a set of meta-objects based on meta-
datato interact with our first class data. By exposing information from the server in a
customizable fashion, we are able to take more control of the way a user interacts with

our application. This chapter also illustrates some of the more complicated interactions
between alarge number of objects, and shows how events can be triggered, captured,
manipul ated, and re-triggered to create message passing infrastructure in an application.

94



Chapter 15. Constructor Route

The Constructor Route pattern provides away to seed aform with dynamic initial data
when a user creates an object in a specific context.

15.1. The Problem

Standard Content Management Systems typically contain individual pages for each type
of resource. These resources rarely interact with each other without requiring the user

to navigate to a new page. However, in adynamic client-side web application, different
resources interact all the time. One pattern that often arisesis creating new objects based
on existing objectsin the application.

For our calendar example, consider the process of creating a new appointment. Clearly, we
can have aform in which the user selects the year, month, day, and time, then proceeds to
fill in the appointment details. However, we would like to have the user be able to click on
aday on the calendar and pre-fill the form with that date. The application aready knows
the date, so pre-populating the date should be a no-brainer. Little things like add up to
respect that our application pays the user. And Backbone makes things like this fairly
trivial on developers as well.

Since we are trying to make our user’slives easier, it would be a nice touch if thisform

was sharable. That is, if the user wants to send the link to someone else to complete or,
more simply, bookmark the form—then it should be possible.

15.1.1. A simple specific route
Tip

Since the following exampleis the simple and non-ideal solution, the code is not
guaranteed to run and some sections have been removed for brevity.

A simple solution comprises of aroute that has a parameter for the year, month, and day:

95



Constructor Route

var Cal endar. Rout er = new (Backbone. Rout er . ext end( {
routes: ({
"create/:year/:nonth/:day": "create"

b

create: function(year, nmonth, day) {
Cal endar . Cr eat eAppoi nt nent Vi ew. set Dat e(year, nonth, day);
Cal endar . Cr eat eAppoi nt nent Vi ew. show( ) ;
}
)0

Thisrouteistied to thecr eat e() method, which sets the date on the form view and
displaysit. The form view, and the resulting day view can then be defined as:

96



Constructor Route

var Cal endar. Cr eat eAppoi nt nent Vi ew = new (Backbone. Vi ew. ext end( {

1)

tenplate: "", //redacted
initialize: function(options) {
_.bindAll (this, 'render');
t hi s. appoi nt ment = new Cal endar. Appoi nt ment () ;
t hi s. appoi nt ment . bi nd(' change', this.render);
}l
setDate: function(year, nonth, day) {
t hi s. appoi nt ment . set ({year: year, nmonth: nonth, day: day});
}l
render: function() {
$(this.el).enmpty();
$(this.el).htm (this.tenmplate(this.appointment.toJSON()));
}l
show. function() {
$(this.el).fadeln();
}

)({el: '#create-appointnment'});

var Cal endar. DayVi ew = Backbone. Vi ew. ext end( {

1)

events: {
"click': 'createAppoint ment
b
initialize: function(options) {
_.bindAl I (this, 'createAppointment');
b
creat eAppoi ntment: function() {
Backbone. Hi st ory. navi gat e( [
‘create',
t hi s. nodel . get (' year'),
t hi s. nodel . get (' nonth'),
t hi s. nodel . get (' day' )
].join("/"), true);

The create-appointment view exposes the two methods invoked by the router: set Dat e
and show. The set Dat e method accepts year, month, and date of the appointment, which
the router pulls from the url (e.g. / cr eat e/ 2011/ 01/ 01). The show method does just that
—showsthe form if it ishidden. Thus, if the requested url is/ creat e/ 2011/ 01/ 01, the
router will send the appropriate date values to the view, which is then pre-populated with
the date, and shown to the user.

97



Constructor Route

Internally, the create-appointment view keeps an Appoi nt ment model to encapsulate
the data being entered. For good measure, we listen for changes on this model (e.g.
from a separate control widget in the application). If the appointment is changed, we
automatically re-render..

Last isthe DayVi ew, in which we bind thecl i ck event on the backgr ound div (so that a
click on an appointment does not trigger the event) to the creation route for that Day Vi ew's
Day.

Now, how can we improve this? It handles our problem, but it is not very flexible.
Consider the case where we want to approximate the time based on where on the Day Vi ew
we clicked. We would have to go through and update the entire chain from the Day Vi ew
to the Rout er to the Cr eat eAppoi nt ment Vi ew SO that the method signature matched the
parameters. Thisis where a Constructor Route shines.

15.2. The Solution

The coreideais to accept object-like syntax through the entire chain so we can have avery
flexible route.

In the router, two things change: the route itself and the function invoked. The route
changesto accept a"splat" of options. Effectively, this route now matches any URL that
beginswith / cr eat e and stuffsthe rest into the opt i ons variable. Thecr eat e route
handler then needs to change to handle the new options format:

98



Constructor Route

Cal endar. Rout er = new (Backbone. Rout er. ext end( {

routes: ({
"create/*options": "create"
}l
create: function(options) ({
var parans = _.reduce(options.split('/"'), function(meno, opt) {

opt = opt.split(':");
meno[opt[0]] = opt[1];
return nmeno;

b

Cal endar . Cr eat eAppoi nt nent Vi ew. set ( par ans) ;
Cal endar . Cr eat eAppoi nt nent Vi ew. show( ) ;
}
)0

In the create-appointment view, the set method becomes much simpler:

99



Constructor Route

$(function() {
Cal endar . Cr eat eAppoi nt nent Vi ew = new (Backbone. Vi ew. ext end( {
tenplate: _.tenplate(]
"<i nput type='text' nanme='year' value='{{year}}'/>",
"<i nput type='text' nane=' nonth' value=' {{nmonth}}'/>",
"<i nput type='text' nane='day’ val ue='{{day}}'/>"

I.join("")),

initialize: function(options) {
_.bindAll (this, 'render');
t hi s. appoi nt ment = new Model s. Appoi nt nent () ;
t hi s. appoi nt ment . bi nd(' change', this.render);

b

set: function(options) {
t hi s. appoi nt ment . set (opti ons);

b

render: function() {

$(this.el).enpty();
$(this.el).htm (this.tenplate(this.appointnent.toJSON()));

b

show. function() {
$(this.el).fadeln();

}
}))({el: '#create-appointnent'});

1)

And finally, the day view that invokes the route needs to be able to send the browser to a
route that can be processed by the router and create-appointment form:

100



Constructor Route

Vi ews. DayVi ew = Backbone. Vi ew. ext end( {
cl assNane: 'day',

tenplate: _.tenplate("{{year}}/{{month}}/{{day}}"),
events: {'click': 'createAppointnment'},

route: _.tenplate("create/year:{{year}}/nonth:{{nonth}}/day: {{day}}"),

initialize: function(options) {
_.bindAll (this, 'createAppointnment', 'render');

b

render: function() {
$(this.el).htm (this.tenplate(this.nodel.toJSON()));
return this;

b

creat eAppoi ntment: function() {
Backbone. hi st ory. navi gate(t hi s. rout e(this.nodel.toJSON()), true);

}
1)

Let’swork our way from the bottom up. First, notice that Day Vi ewis still specifying which
parameters to send, but now it’s prefixing each value with akey. So our route would look
like:

[ createl/year: 2011/ nont h: 01/ day: 01

Also, we're using an underscore template for our route, who says views get to have al the
fun? It's much more readable than the array join we were doing earlier.

Now, if welook in the Rout er , we can see we're using a splat option * opt i ons which
will match anything after the/ cr eat e/ . Thismeansthat opt i ons inthecr eat e function
will be astring likeyear : 2011/ mont h: 01/ day: 01. So, we split this string on the/ and
reduce the array of key: val ue tuples by splitting on the : and accumulating a params
object. Next, we take that params object and send it to Cr eat eAppoi nt ment Vi ew. set .

Cr eat eAppoi nt ment Vi ew. set merely delegates to appoi nt ment . set since the params
are assumed to trandlate directly to the appointment’ s data format.

This means that we can now build virtually any route—as long as the appointment model
supports the resulting parameters—and they will be set automatically. We can include a
time or al | Day option in the route and it gets passed through to the model backing the
view. Nifty!

101



Constructor Route

Warning

We are not encoding the URI components here because we are assuming they are
relatively smple. Keep in mind a URI can only contain 2048 characters. Also, if
our parametersincluded the/ character, this solution would break down. However,
this ssimple strategy works in many cases were your datais short and smple. If
your datais more complex or input via the user, you should run encodeURI on it.

15.3. Conclusion

Any route in an application can be considered data. In general, many of the routes that an
application uses contain only a small amount of data: "l want to see X." However, aURI
can be up to 2048 characters long, so there is plenty of room in aroute to pass along a
substantial message information. This chapter serves as a template for demonstrating ways
of encoding dynamic data into routes. It does not just have to be used to render form data,

it could filter a collection based on a parameter or be used to categorize or sort elementsin
aview.

102



Chapter 16. Router Redirection

16.1. Introduction

Although pure client-side redirection is not possible, this recipe will discuss strategies for
achieving the same desired effect.

16.2. The Problem

Redirection—requesting one thing, but being sent another—is not quite as common in
Backbone applications as in its server-side brethren. Even so, there aretimeswhen it is
down right handy—even necessary.

In server-side web applications, redirection serves as a means to delegate an action to the
appropriate destination or to send a client to a different destination after an action has been
performed. For example, after creating a calendar appointment, a server-side application
might redirect the user to the newly created event’s URL .

Browsers are smart enough to recognize a server-side redirect action (e.g. an HTTP 302
redirect), skipping them when a user hits the back button. Browsers are not quite so
intelligent about client-side redirects. If a client-side route simply navigates to another
route, the user cannot navigate beyond this point via the back button. The back button will
re-request the client-side redirect, sending the user back to the place from which she was
just attempting to navigate away.

Thisis definitely not ideal.

16.3. The Solution

In our Calendar application, consider the controls at the top of the application that
navigate forward and back a month. If we were to store the the current month on the
Cont r ol sVi ew, then we might be tempted to simply increment or decrement that number
based on a user clicking "Next" or "Previous" links.

103



Router Redirection

We could get into trouble if the user manually enters aroute or if the application navigates

between months in any other way (e.g. skips 6 months ahead). The counter would become
out of sync with the route itself.

A simple solution to illustrate this problem might look like:

104



Router Redirection

/[* This code illustrates a BAD | DEA so don't copy it */
var Cal endar. Control sView = new (Backbone. Vi ew. ext end({
el : '#cal endar .controls',

events: {
"click .next': 'nextMnth',
‘click .prev': 'prevhonth'

b

initialize: function(options) {
_.bindAll (this, '"nextMonth', 'previMonth');

}l
next Mont h: function() {
wi ndow. | ocati on = 'nonth/next';
}l
previMont h: function() {
wi ndow. | ocation = 'nonth/prev';
}
)0
var Cal endar. Rout er = new (Backbone. Rout er . ext end( {
routes: ({
"month/:id : 'nonth',
"mont h/ next': 'nextMnth',
"mont h/ prev': ' prevhonth'
}

initialize: function() {
this.nonth = 1;

}

nmont h: function(id) {
this.nonth = 1;
/* Display the month */

}l
next Mont h: function() {
wi ndow. | ocation = 'nmonth/' + ((this.nonth++) % 12);
}l
previMont h: function() {
wi ndow. | ocation = "nmonth/' + ((this.nmonth--) % 12);

}
10O



Router Redirection

Once the application navigates to nont h/ next , it becomes part of the browser history.
Consider the following steps:

1. The user clicksthe "Next" link, which islinked to the nont h/ next client-side route.
2. The application maps nont h/ next to the next Mont h() router method.
3. Thisnont h/ next URL is stored in the browser’s history.

4. The next Mont h() method adds another entry in the browser’s history, as it now sets
wi ndow. | ocat i on to something like nont h/ 2 (if we had been in November).

5. The browser comes to rest displaying February’ s appointments.

A user desiring to check on something something back in January might naturally click the
browser’ s back button instead of our UI’s"Previous" control. Because nont h/ next isthe
previous resource in wi ndow. hi st ory, the browser would hit the wrong route. Not only
isthe route wrong, but is also aredirection route. Thus hitting nont h/ next would also
increment the internally stored t hi s. nont h value past "2", sending the user to March.

In effect the user would get the opposite of the desired / expected effect of clicking the
Back button.

From a code quality perspective, there are additional problems with our obvious approach.
Firgt, it is an annoyance to keep track of a month variable when the month isright therein
the route (mont h/ 2). Furthermore, performing routing in the view is a brittle solution (the

wi ndow. | ocat i on call isrouting code!). If we change our routes, we have to hunt through
the application for these calls. It is much better to move this sort of code into the Rout er .

Thus, a better approach is to create redirection methods on our Rout er that handle
modifying the route. While the Cont r ol sVi ewisresponsible for triggering a next or
previous action, it is not responsible for re-routing the application. It is much better to keep
all of therouting logic inside our Rout er .

To accomplish this, let’s examine the view first. This should look pretty standard, as we
are only binding methods to the click event on the . next and . pr ev elementsin the view:

106



Router Redirection

var Cal endar. Control sView = new (Backbone. Vi ew. ext end({
cl assNane: 'controls',

events: {
"click .next': 'nextMnth',
‘click .prev': 'prevhonth'
} 1

initialize: function(options) {
_.bindAll (this, '"nextMonth', 'previMonth');
} 1

next Mont h: function() {
this.trigger(' next');
} 1

previMont h: function() {
this.trigger(' previous');
}
)0

Notice that we are no longer setting wi ndow. | ocat i on nor are we calling the Rout er from
the view. Instead, we fire custom events. The reasoning behind this will be discussed more
in Chapter 18, Object References in Backbone, but the bottom line is that, since the Rout er
isahigher-order object in the application, it would be inappropriate for our lowly view

to give it commands. Instead, the view will fire events that the Rout er can listen to, if it
deignsto do so.

In the Rout er , we bind routes alittle differently than you may be used to. Generally,
routes are bound via a property called r out es that are bound to methods on initialization.
Under the covers, Backbone simply passes each of those key-value pairsto ther out e
method. Since we are going to re-use the month route, we are binding the route ourselves
inthei ni ti al i ze method:

107



Router Redirection

var Cal endar. Rout er = new (Backbone. Rout er . ext end( {
nont hRout e: this. _routeToRegExp("nonth/:id"),

initialize: function() {
_.bindAll (this, 'nextMnth', 'previMonth', "nonth');
Cal endar . Cont r ol sVi ew. bi nd(' next "', t hi s. next Mont h) ;
Cal endar . Cont r ol sVi ew. bi nd(' previ ous', this.previbnth);
this.route(this.nonthRoute, 'nonth', this.nonth);

b
/1

MO

Thethis.route(...) cal hasthe same effect of the following entry inther out es
object:

{ "nmonth/:id, 'nonth }

But with the additional goodness of establishing a DRY/, robust, decoupled binding
between the view’ s next/previous click actions and the next/previous routes.

The rest of our router then becomes:

108



Router Redirection

var Cal endar. Rout er = new (Backbone. Rout er . ext end( {
nont hRout e: this. _routeToRegExp("nonth/:id"),

initialize: function() {
_.bindAll (this, 'nextMnth', 'previMonth', "nonth');
Cal endar . Cont r ol sVi ew. bi nd(' next "', t hi s. next Mont h) ;
Cal endar . Cont r ol sVi ew. bi nd(' previ ous', this.previbnth);
this.route(this.nonthRoute, 'nonth', this.nonth);

}l
nmont h: function(id) {

/* Display the month */
}l

next Mont h: function() {
t hi s. nroveMont h(1);

b

previMont h: function() {
t hi s. noveMont h(-1);

b

noveMont h: functi on(by) {
var id = this._extract Paranet ers(mont hRout e, Backbone. hi st ory. get Fragment ()
Backbone. hi st ory. navi gat e("nmont h/ " +( (i d+by) %42), true)

}
)0

We run the route through an undocumented Backbone method called _r out e ToRegExp.
This method converts the Backbone-style route into a RegExp we can use for matching
later.

Alsointhei ni tial i ze method, we bind our own next Mont h and pr evMont h methods to
the Cont r ol sVi ew's custom events. This event-oriented approach to control flow is much
safer and more flexible for our application in the long-run. All routing decisions are made
in the router, and not spread across various objects throughout the application.

The next Mont h and pr evMont h methods are delegating to a noveMont h method

because their functionality is extremely similar—differing only in the direction they are
moving. noveMont h is calling another undocumented method of the Backbone Router:
_extract Par anet er s. This method takes a route RegExp and a URI fragment, returning
us the parameters that we define in the RegEXp. Backbone. hi st ory. get Fr agment will

109



Router Redirection

return a browser-normalized URL fragment representing what comes after the # (if using
push-state). The end result isthat our : i d will match and wereceive[i d] asaresult.

Tip

To be clear, we are using these undocumented Backbone methods to keep our
routing DRY .

Now, when a user clicks the next or previous button on the view, our route will be changed
to the next or previous month. We did this by firing and listening to custom events and

by introspecting and manipulating our current route. Thisyields a cleaner and decoupled
implementation. Our Rout er became smarter (by knowing everything about month
routing) and our Cont r ol sVi ew became dumber by losing that same knowledge of month
routing (and even al routing and the flow of the application).

Tip

Objects in Backbone should only concern themselves with behaviors related to
their class name. Views should only have view behaviors, and Routers should
only concern themselves with routing. All other actions should be delegated to
another object (like aview calling its model) or cause an event to fire to which an
interested object can listen (asin the case here where the Router listensto a view).

One final note in our updated solution is the use of Backbone. hi st ory. navi gat e()
instead of setting wi ndow. | ocat i on directly as we had before. Both ultimately do the
same thing—adding a new entry to the browser’ s history and potentially forcing the
browser to request that new page. Using Backbone. hi st ory. navi gat e() isalways
preferred because it works cross browser with push-state and normal URL s alike.

I mportant

Manipulating wi ndow. | ocat i on directly isacode-smell in Backbone.js
applications. Always use Backbone. hi st ory. navi gat e() .

We call Backbone. hi st ory. navi gat e() with asecond argument, t rue. Thistells
Backbone that, in addition to updating the browser’ s history and address bar with the
new month’s URL, the corresponding route method should be invoked. That is, if we

110



Router Redirection

Backbone. hi st ory. navi gat e(' mont h/ 2' ), then our month route should fire, which tells
the mont h() method to fire, rendering the controls view.

Without thet r ue second argument, Backbone simply updates the browser history and
address bar. The calling context would then be responsible for changing internal state as
needed.

16.3.1. Default Routes

Often it makes sense to redirect from an application route or from a resource route to
amore specific location. If our calendar’ s entry URL is http://calendar.example.com,
then we might want to redirect the browser to http://calendar.example.com/#month/1
immediately after logging in.

To accomplish something like this, it is again tempting to create a"default” router method
that performs aBackbone. hi st ory. navi gat e() redirection:

/[* Don't do this! */
var Cal endar. Rout er = new (Backbone. Rout er . ext end( {
routes: {
'": "defaul t",

}

default: function() {
Backbone. hi st ory. navi gat e(" nont h/ 1") ;

}
1),

This constitutes the poor practice of breaking the user’s Back button on your site, so do
not do it 1. When the browser hits the default route, two additional browser hi story entries
are created—one for theinitial entry point (http://calendar.example.com) and one for the
redirected resource (calendar.example.com/#month/1). If the user clicks the Back button,
the browser will hit the default route, which will promptly redirect back to the page the
user was just trying to leave.

Instead of attempting atrue redirect, we do it under the covers:

lwell, maybe on the application start page, but even there it feels henky.

111


http://calendar.example.com
http://calendar.example.com/#month/1
http://calendar.example.com

Router Redirection

var Cal endar. Rout er = new (Backbone. Rout er . ext end( {
routes: ({
‘" "nponth"

b

nmont h: function(id) {
if (typeof(id) == "undefined") id=1;

/* Display the month */
}
1)

Here, we tie the default route directly to the nont h() method that would have been
invoked anyway. That method subsequently needs to be alittle smarter about handling
undefined IDs, but that isthe only real change required.

Ultimately, we achieve our "redirection” to the appropriate resource, without annoying our
user by breaking the Back button.

16.4. Conclusion

True redirection will not work in the browser without significant user experience
consequences. Even so, we are able to mimic redirection behavior by keeping routing
where it belongs: in routing objects.

112



Chapter 17. Evented Routers

17.1. Introduction

The Evented Router pattern uses route cleanup as an example of how to use Router events
to DRY up Router code.

17.2. The Problem

In amodern client-side application, there will be a number of routes, and many ways to
transition in between them. When navigating from one route to the next, the previous route
needs to be cleaned up and the new route needs to be rendered. Since an application with

N routes could potentially have N2 transitions, adding a new route introduces N new
possible transitions. Clearly it is unreasonable to represent every possible transition as an
application grows. Let’s consider our calendar application, in which we have three main
routes:

1. / nont h/ ;i d: Show a month
2. /event/:id: Show an event
3. / event / new. Create a new event

A simple router for this scenario might look like:

113



Evented Routers

Cal endar Rout er = Backbone. Rout er. ext end( {

routes: ({
"/month/:id : 'nonth',
"fevent/:id : 'event',
'/event/new : 'new _event
Ji s

initialize: function() {
_.bindall(this, "month', 'event', 'new event');

b

nmont h: function(id) {
reset _event();
reset _new event();
Cal endar . Mont hVi ew. show(i d) ;
) 1
reset _nmonth: function() { Cal endar. MonthVi ew. hide(); },

event: function(id) ({
reset _nont h();
reset _new event();
Cal endar . Event Vi ew. show(i d) ;

b

reset _event: function() { Cal endar. Event Vi ew. hide(); },

new _event: function() {
reset _nont h();
reset event();
Cal endar . NewEvent Vi ew. show() ;

b

reset _new event: function() { Cal endar. NewEvent Vi ew. hide(); }

1)

That router is already alittle nutty. Clearly adding new routes is only going to make
matters worse. What other options are there?

17.3. The Solution

To solve this problem, we will combine Backbone' s Events with some metaprogramming.
Whenever a Router matches aroute, it will fire an event corresponding to the routing
method. So visiting / event / 4 matches the route event and will firer out e: event . We

114



Evented Routers

will add event binding to our initializer that bindsther out e: X event to ther eset _Y
method whenever X isnot the sameas Y. In other words, when we route to X, al the other
routes will have their reset method triggered, cleaning up everything but X.

Cal endar. Rout er = new (Backbone. Rout er. ext end( {

routes: ({
"/month/:id : 'nonth',
'/event/new : 'new event',
"/event/:id : 'event'

Ji s

initialize: function() {
_(this.routes).each(function(destination) ({
_(this.routes).each(function(other) {
if (destination === other) return;
/] route:x => reset_y
this.bind('route:’ +destination, this['reset ' +other]);
}, this);
}, this);
b

nont h: function(id) { Cal endar. Mont hVi ew. show(id); },
reset _nonth: function() { Cal endar. Mont hVi ew. hide(); },

event : function(id) { Cal endar. Event Vi ew. show(id); },
reset _event: function() { Cal endar. Event Vi ew. hide(); },

new_event: function() { Cal endar. NewkEvent Vi ew. show(); },
reset _new event: function() { Cal endar. NewEvent Vi ew. hide(); }

)0

Now, if we add a new route, we need a new route method for it as well as a corresponding
reset method. There is no need to modify all the other methods to keep them up to date.
Now, adding new routes is O(1) code modifications, instead of O(N/2)!

Asin other recipes, we can extract this behavior into a helpful mixin:

115



Evented Routers

M xi ns. Aut oReset Router = {
aut oReset Rout es: function() ({
_(this.routes).each(function(destination) ({
_(this.routes).each(function(other) {

if (destination === other) return;
this.bind('route:’ +destination, this['reset ' +other]);
}, this);
}, this);

}
}

And now we just need to call this method in our initializer and mix it in:

Cal endar . Rout er = new (Backbone. Rout er. ext end( _. ext end( {

routes: {
"/month/:id: 'nmonth',
'/event/new : 'new _event',
‘/event/:id: 'event'

I

initialize: function() {
t hi s. aut oReset Rout es() ;

b

nmont h: function(id) { Cal endar.MnthVi ew. show(id); },
reset _nonth: function() { Cal endar. Mont hVi ew. hi de(); 1},

event : function(id) { Cal endar. EventVi ew.show(id); },
reset _event: function() { Cal endar. Event Vi ew. hi de(); },

new_event: function() { Cal endar. NewkEvent Vi ew. show(); },
reset _new event: function() { Cal endar. NewkEvent Vi ew. hi de(); }
}, Mxins. Aut oReset Router))) ()

Simply by agreeing on this nomenclature of net hod and r eset _net hod we can handle al
possibly transitions between all states with our mixin and we only have to implement those
methods when we add a new route.

Tip

If you are working with an application with multiple routers, bind all of the reset
methods to ageneral r eset event. Next, definear eset method that triggers the

116



Evented Routers

reset event. Now, from router X you can call Y. reset () whenever X matches a
route to reset al of Y'sviews.

17.4. Conclusion

Thisis definitely one of the more complicated patterns in the book. We are applying
powerful metaprogramming techniques to Backbone' s event structure in order to handle a
combinatorial growth problem. This serves as a solid base from which to extrapol ate other
methods of using events in dynamic ways. For example, Backbone modelsfire change
events as well as attribute-specific change events, like change: nane when nane changes.
What interesting problems could you solve by dynamically binding to attribute change
events on instantiation of a model?

117



Chapter 18. Object References In
Backbone

Backbone.jsis aloose framework. Two different devel opers can use Backbone with
entirely different patterns and Backbone is perfectly fine with it. One of the very first
pieces of example code | (Nick) read when | wasfirst learning Backbone looked like this:

M/Vi ew = Backbone. Vi ew. ext end({
initialize: function(options) {
t hi s. nodel . view = this;
}
})

MyModel = Backbone. Model . ext end({

initialize: function(options) {

_.bindAll (this, 'renpoveView);
this.bind('destroy', this.renoveView);

}l
removeVi ew. function() {
t his.view remove();

}
9]

var nodel = new MyModel ();
new MyVi ew( { nodel : nodel )});
nodel . destroy();

Not knowing any better, this was the pattern | used for quite some time when | needed to
remove aview after the model was removed. At this point in the book, it should be clear
that thisisthe wrong way to remove aview. Instead, we should be using events:

118



Object References
in Backbone

M/Vi ew = Backbone. Vi ew. ext end({
initialize: function(options) {
t hi s. nodel . bi nd(' destroy', this.renove);

}
1)

MyModel = Backbone. Model . ext end({})

var nodel = new MyModel ();
new MyVi ew( { nodel : nodel )});
model . destroy();

This solution is clearly ssmpler and more succinct. The model has no ideathat aview
exists at al. The model’ s implementation is completely independent of any other piece of
the application. Thisis decoupling at its finest.

The view, on the other hand, does still require a reference to the model in order to perform
its duties. In this example, we only useit to bind adest r oy event listener, but Backbone
retains the reference under it covers.

SoitisOK for aview to hold areference to amodel, but not the other way around. Right?

To answer that question, let’s delve into when and where it is appropriate to pass
references around in Backbone. In particular, notice the code smell in our "newbie" code:
the model knows about its view in order to have the view respond to a change in the
model’s state:

MyModel = Backbone. Mbdel . ext end({

initialize: function(options) {

_.bindAll (this, 'renmoveView);
this. bind('destroy', this.renmoveView);

b
/1

1)

The model should be indifferent to its listeners. In another case, however, it is reasonable
(and 100% necessary) to have aview know about a collection:

119



Object References
in Backbone

M/Vi ew = Backbone. Vi ew. ext end({
/* note that the “collection” attribute on the options
* objects is automatically assigned to "this.collection
*/
initialize: function(options) {
_.bindAll (this, 'render');
}l

render: function() {

$(this.el).enmpty();
this.collection.each(this.addOne);

}l
addOne: function() {
vi ew = new O her Vi em { nodel : nodel });
vi ew. render () ;
$(this.el).append(view el);
}
})

There is no way we could render aview for a collection without the view knowing about
the collection. This brings us to the first portion of this recipe: the Precipitation Pattern.

18.1. Precipitation Pattern

The precipitation pattern encapsul ates the idea that references in Backbone should flow
downstream from higher-order objects. Furthermore, references should never be made
back "up” the stream. The order of Backbone objects from highest to lowest is as follows:

1. Router
2. View
3. Collection
4. Model

It is OK to move "sideways", for example from one view to the next (asin the Collection
View pattern). It is not OK to move "upstream”, for example from aModel to aView or a
View to a Router.

Do not think only about the types of objects. Consider their relationships and behavior. It
would be inappropriate for aSi debar Vi ewto reference a Mai nPanel view if one was not

120



Object References
in Backbone

the descendant of the other. However having a TodoVi ew reference a TodoCont r ol sVi ew
would be appropriate if the TodoCont r ol sVi ewwas a child view containing a control
panel for aTodo model represented by the TodoVi ew.

Taking this metaphor another step, the water cycle on Earth sees water evaporate to
clouds, which rains down at the tops of the mountains. In Backbone, Events are our rain. A
Model may fire events and a View can listen to them and take action. We may even create
aspecial customized event for aModel specifically for one of our Views to use, but we do
not reference the View directly. References are the rivers that flow down from the top of
the mountain to the ocean. The only way to communicate back up the chain is by raining
down some events.

18.2. Dependency Injection

As our references flow downstream, there is a specific code pattern that keeps our code
clean and organized: dependency injection. To illustrate how this pattern works, let’s look
at our Calendar view.

Here, we use aglobal variable, wi ndow. Appoi nt nent s, that holds our collection of
Appointment objects. The Mont hvi ew then binds event listeners to that global object:

121



Object References
in Backbone

Cal endar . Col | ecti ons. Appoi nt nents = Backbone. Col | ecti on. ext end({
nodel : Cal endar . Model s. Appoi nt ment

1)
wi ndow. Appoi nt ments = new Cal endar. Col | ecti ons. Appoi nt ment s() ;

Cal endar . Vi ews. Mont hVi ew = Backbone. Vi ew. ext end( {
initialize: function(options) {
wi ndow. Appoi nt ment s. bi nd(' add', this.addOne);
b
render: function() {
$(this.el).enmpty();
wi ndow. Appoi nt ment s. each(t hi s. addOne) ;
b

addOne: function(appoi ntment) {

var view = new Cal endar. Vi ews. Appoi nt nent Vi ew( { nodel : appoi nt nent});

vi ew. render () ;
$(this.el).append(view el);
}
1)

wi ndow. Mont hVi ew = new Cal endar . Vi ews. Mont hVi ew()

Thisisabrittle solution. First, we need to ensure there are no variable collisions on

wi ndow. Secondly, future changes would necessitate that we update all such references.
For example, if we find that our application needs wi ndow. Thi sMont hAppoi nt ment s
and wi ndow. Last Mont hAppoi nt ment s, then we would have to replace references to

wi ndow. Appoi nt ment s with these new appointment collection slices.

In this case, Mont hvi ew depends on wi ndow. Appoi nt ment s. We cannot change this

dependency, but we can inject it to keep our code a little more flexible:

122



Object References
in Backbone

Cal endar . Col | ecti ons. Appoi nt nents = Backbone. Col | ecti on. ext end({
nodel : Cal endar . Model s. Appoi nt ment

1)

Cal endar . Vi ews. Mont hVi ew = Backbone. Vi ew. ext end( {
initialize: function(options) {
this.collection.bind('add, this.addOne);
} 1

render: function() {

$(this.el).enmpty();
this.collection.each(this.addOne);

b
addOne: function(appoi ntment) {
var view = new Cal endar. Vi ews. Appoi nt nent Vi ew( { nodel : appoi nt nent});
vi ew. render () ;
$(this.el).append(view el);
}
1)

new Cal endar. Vi ews. Mont hVi ew( {
col l ection: ( new Cal endar. Col | ecti ons. Appoi nt nents() )

1)

Notice that in this example we still have the same references but keep them local to
the objects involved. Because dependency injection is such a helpful pattern, viewsin
Backbone automatically self-assign the keys nodel and col | ect i on.

If multiple views were to reference this collection, we can still dependency inject the
object in our application’s start-up using jQuery’s onReady:

$(function() {
var collection = new Cal endar. Col | ecti ons. Appoi nt nent s() ;
new Cal endar. Vi ews. Mont hVi ew( { col | ecti on: collection});
new Cal endar . Vi ews. Mont hSi debar ({col | ecti on: collection});

1)

Note that the col | ect i on variable will not survive outside of this method, thus avoiding
the dreaded global variable.

123



Object References
in Backbone

Tip

If you are unable to inject a dependency, it may be an indication that your
application architecture does not follow the precipitation pattern and should be
refactored.

18.3. Conclusion

Keeping your dependencies in check isimportant for maintaining loosely coupled objects.
By limiting the direction in which references flow and limiting the scope to which those
references are made, we can reduce the number of dependencies "floating around”. We
also enforce that the only dependencies of an object are given to it on instantiation. Not
only do? this help us write better code, it isan integral part of writing code that is easy to
unit test ~.

Check out Appendix A, Getting Started with Jasmine if you are interested in unit testing Backbone.

124



Chapter 19. Custom Events
19.1. Introduction

Custom events are aloose mechanism for communicating change between concerns
without the risk of collisions with built-in browser and Backbone events.

19.2. The Problem

Events make life worth living. They make coding fun. They solve all of the problemsin
the world. Except when they don't.

Even after eliminating as many callbacks as possible. Even after dutifully following the
Precipitation Pattern. Even after producing the most beautiful Backbone code possible, it is
still possible to find yourself in event hell.

Event hell iswhat happens when you find yourself responding conditionally to events.
That is, display this sub-view when the model updates, but only if the collection has this
number of modelsin it. Otherwise, display the non-compact message.

Events are a fantastic mechanism to decouple the various components of a Backbone
application. But once there are many events flying, it is amost a necessity to start using
custom events.

19.3. The Solution

Backbone invented neither events nor custom events. Events have been part of Javascript
for aslong as Javascript has been around. Custom events are a natural outgrowth of
Javascript’ s event driven nature. They allow developersto realize the power of DOM
events in their own applications.

Since Backbone is not aDOM framework like jQuery, its events are not clicks and
mouseOvers. Rather, Backbone' s events describe actions that take place in its models

125



Custom Events

and collections. Its events are things like: "add", "remove", "change”, "destroy", and the
dreaded "error" event.

Backbone also includes a special little event, named al | , which pretty much does what
you might expect. If you are listening for al | events, your listener will receive all events
tossed by Backbone parts.

As we have seen throughout this book, there is much power in these events. Naturaly,
Backbone does not restrict you to just this subset of events.

In fact, Backbone itself fires namespace attribute events when an attribute in the model is
updated. For instance, if the title attribute is changed, Backbone models automatically fire
achange: titl e event.

There are any number of reasons that we might want to use our own custom eventsin
Backbone applications. As mentioned in the introduction, using custom events helps to
further decouple design and to prevent conflicts with built-in Backbone events.

19.3.1. Application Triggered Events

To see thisin action, consider the month view of our calendar application once again.
When shifting between months, the collection is being updated via a set Dat e method to
set the current month (e.g. "2012-02"). When this happens, a number of associated views
need to be updated as well. The page title and document title need to be updated with the
new date. The navigation elements need to be updated to point to the correct month. The
sidebar overview needs to be updated as well.

Listening to the collection’s built-in "all", "reset", or "change:date" eventsis not a solution
for these disparate views. Each of them would need to contain identical logic to decide if
collection updates are aresult of amodel being updated or the collection’ s date changing.

Rather than asking the event subscribers to discern the kind of change, why not simply
have the source of the change decide for itself?

For instance, when set Dat e() isinvoked, we could immediately trigger the
cal endar : change: dat e event:

126



Custom Events

[* Cood, but we can do better */
var Appoi nt nents = Backbone. Col | ecti on. ext end({
1. ..
setDate: function(date) {
this.date = date;
this.fetch();
this.trigger('cal endar: change: date');

b
/1

1)

Aninternal state of the collection is changing, but not necessarily the underlying models or
the collection itself will change. As such, we should not risk triggering the built-in change
Backbone event.

Here, we namespace the event as being specific to our calendar application by prefixing
the event with cal endar : . The remainder of the event describes the thing that is occurring
—in this case, our application’s date is changing.

Tip

Naming conventions for events are fairly application specific. They should always
describe the event that is occurring from the perspective of the source of the event,
though it should still read well in the consumer’s context. If in doubt, following the
Backbone convention, but namespaced for your application, is always a reasonable
starting point.

With the collection now generating custom events, the next step it to listen for them. For
that, consider the Ti t | eVi ew, which updates the page title with the current month:

var TitleView = Backbone. Vi ew. ext end( {
initialize: function(options) {
options. col |l ection. bi nd(' cal endar: change: date', this.render, this);
b
render: function() {
$(this.el).htm (" (' + this.collection.getDate() + ') ');
}
)

127



Custom Events

TheTi t 1 eVi ewneeds to bind to the collection so that it can listen for our custom event.
With that, the page title will be updated to include the current month, as described by the
collection.

Tip

Thereis no need to explicitly assign thet hi s. col | ecti on in a Backbone view.
Backbone will automatically createthet hi s. col | ecti on property whenitis
passed vianew Vi ewThi ngy({col | ection: ny_col |l ection}).

When working with events, always keep them as close to the actual change as possible.
When changing months, the event should not fire until the date has actually changed.
That is, the calendar’ s date is not really changed until the collection has been successfully
fetched from the backend:

var Appoi ntments = Backbone. Col | ecti on. ext end( {
1. ..
setDate: function(date) {
this.date = date

this.fetch({
data: {date: this.date},

success: _.bind(function() {
this.trigger('cal endar: change: date');
}, this)

1)
},
...

1),

Here, we supply the dat e query parameter (viathe dat a attribute supplied tof et ch())
so that we collect only a subset of the backend store’ s data. By doing so, we have the
opportunity to passasuccess calback to the normal f et ch() method.

The success callback istheideal place for the "calendar:change:date” event to originate.
Only if the server successfully responds with with the updated collection information
should the event fire and various views start their corresponding updates.

If anything goes wrong, the same views can remain the same or, possibly, subscribe to an
"error" event to indicate the failure condition.

128



Custom Events

19.3.2. User Triggered Events

Custom events are perhaps even more powerful when the user istriggering them.
Consider, for example, that the user istrying to highlight calendar appointments with
matching titles.

The Cal endar Fi | t er view might look something like:

var Cal endarFilter = Backbone. Vi ew. ext end({
tenpl ate: _.tenplate(
'<i nput type="text" nane="filter">" +
'<i nput type="button" class="filter" value="Filter">
),
render: function() {
$(this.el).htm (this.tenmplate());
return this;

}1
events: {

"click .filter': 'filter'
}1

filter: function() {
var filter = $('input[type=text]', this.el).val();
this.trigger('calendar:filter', filter);

}
1)

Here, we create a simple view comprised of form elements. Using the event s attribute
of Backbone views, clicks on the "Filter" button will trigger a custom event on the view
itself. In this case, when the event is triggered, it makes sense to associate the event with
data—the text being used to filter appointment titles.

Events should always bubble up the Precipitation chain. Here, this event should be
consumed by the collection view:

129



Custom Events

var Cal endar Col | ecti on = Backbone. Vi ew. ext end({
initialize: function(options) {
/1
this.initialize filter();

} 1
initialize filter: function() {
$(this.el).after('<div id="cal endar-filter">");

var filter = new Cal endarFilter({
el : $('#calendar-filter'),
collection: this.collection

1)

filter.render();

/* Bind to the
filter.bind('calendar:filter', this.filterCollection, this);

b
/1

1)

ThefilterCollection method can then tell each appointment view to highlight
themselves:

filterCollection: function(string) {
this.views. each(function(view) {
vi ew. hi ghli ght1fMatch(string);

1)
}

Very little code was required thanks to the use of custom events (this time further
customized with event data). Despite the lack of code, we achieve afairly sophisticated
bit of functionality without needing to make any requests at all of models, collections or
anything else in the the backend.

19.4. Conclusion

Low coupling and high cohesion have long been hallmarks of object oriented coding.
Javascript is not known for its object oriented nature, but Backbone.js makes heavy use of
objectsinitsModels, Views and Collections. To prevent views from being coupled to one

130



Custom Events

another or, worse yet, coupled to collections and models, we can leverage what Javascript
iswell known for: its functional and event-driven nature.

131



Chapter 20. Testing with Jasmine

This recipe gives afew pointers to maximize effectiveness when testing Backbone
applications with Jasmine *.

20.1. The Problem

A strong test suite is amust for maintaining robust, accurate code. How else can we be
sure that changes do not break existing functionality? In addition to preventing breakages,
testing our Backbone applications can also significantly enhance the cleanliness, and hence
maintainability, of the code.

Even though we may accept that testing is valuable, browser testing is notoriously
difficult. Let’stake alook at some strategies for long term success with a Jasmine 2 test
suite.

20.2. The Solution

There are two kinds of tests that we are going to consider in this recipe: high-level,
integration tests and individual unit tests. Both have their uses and it is inappropriate to use
one or the other exclusively.

Integration tests are great for interacting with Backbone applications across concerns.
When we want to verify that atext field change effects a change in amodel, which
ultimately resultsin a change in a separate view, we are performing an integration test.

Unit tests are what we use to test individual views, collections and modelsin isolation.
These are generally smaller and less likely to catch regressions. As such, many developers
tend to view them as less important than their higher level brethren. But unit tests are great
at forcing us to view our classes an individual objects with their own API. In practice, if it
is hard writing atest for aclass, it isamost certainly because there is too much coupling
between it and other classes.

thttp://pivotal .github.com/jasmine/
2More information on getting started with Jasmine can be found in Appendix A, Getting Started with Jasmine

132


http://pivotal.github.com/jasmine/

Testing with Jasmine

To see both types of testsin action, we will walk through developing asimple list of
upcoming appointments in our calendar application.

20.2.1. Ingredients

We are going to make use of the following ingredients in this particular recipe:

- jasmine, arelatively small, browser-based Javascript library that facilitates well-
written tests.

« sinon.js , which we will use to mimic backend server calls.

* jasmine-jquery S, which dramatically improves the clarity of Jasmine tests.

20.2.2. Integration Testing with Jasmine

Inthelist view, if there are three items in the data store, then it stands to reason that three
list items should be shown on the page. Or, in Jasmine-ese:

describe("list view', function() {

it("lists all appointnments”, function() {
expect ($("li", "#appointment-list").length).toEqual (3);
1)
1)

In this case, we expect atag with an ID of appoi nt nent - 1 i st to include abunch of list
items. The jQuery selector of $("1i", "#appointnent-Ilist") will yield awrapped
set of al such list items. We can then examine the | engt h property of the wrapped set to
compare it to our expectation that there are three elementsin our list view.

What makes this test an integration test rather than a unit test has nothing to do with our
spec so far. Rather, it is the context in which we are running and checking expectations.

If we had said that the view, given amodel with three items, should add three items to the
DOM, we might have been able to use this as a unit test. Instead, we couched thistest in
terms of what was saved in the database ("three items in the data store”).

To describe that backend store, we must either point our Backbone application at a test
server or stub out calls to the server. To minimize the hassle of building and tearing down
atest database, we will do the latter. We stub out HTTP calls with sinon.js:

133



Testing with Jasmine

describe("list view', function() {
var server = sinon.fakeServer.create()

list = [{}, {}, {}I;

/1 Respond to any queued AJAX calls
bef or eEach(function() {
server.respondW t h(
'GET',
/\ [/ appoi nt nent s/,
[ 200,
{ "Content-Type": "application/json" },
JSON. stringi fy(list) ]
)i

server. respond();

1)

it("lists all appointnments", function() { /* ... */ });

1)

Here, we have most definitely veered into the realm of integration testing. We began with
atest’s expectation describing elements on aweb page. Now, we are describing a JSON
response from a backend server.

Stepping through the setup code, we begin by creating a sinon.js server:

describe("list view', function() {
var server = sinon.fakeServer.create();

...
1),

Oncethisfaker server isinstantiated, it will intercept all outgoing HT TP requests from our

Backbone.js application (or from any other widget on the current page), responding to it as
we desire.

I mportant

Unless otherwise specified, all requests intercepted by sinon.jswill come back as
404 Not Found (more specifically, [ 404, {}, ""1).

In this case, we respond with the JSON representation of alist of three (empty) documents:

134



Testing with Jasmine

var list = [{}, {}, {}];

/1 Respond to any queued AJAX calls
bef or eEach(function() {
server.respondW t h(
'GET',
/\ [/ appoi nt nent s/,
[ 200,
{ "Content-Type": "application/json" },
JSON. stringi fy(list) ]
)i

server. respond();

1)

Sinon.js supports avery flexible syntax. In this case, we use the form of r espondW t h()
that accepts three arguments: the HT TP method used (GET), the resource being requested
(any URL containing / appoi nt ment s) and the response. The response, in turn, consists

of three parts: the HTTP status code (200 oK), any HTTP headers that we wish to include
(Content - Type: appl i cation/json) and the body of the response (the JSON describing
alist of three documents).

Tip

Sinon.js supports simpler, more compact syntax, but we prefer the more verbose
version shown here. We are being very explicit about expectations, leaving less
room to be surprised.

After describing r espondW t h() , we tell the server tor espond() immediately

to any pending queries with ser ver . respond() . Up to this point, our earlier

si non. f akeSer ver. creat e() had been merrily intercepting all HTTP activity and
placing it into a queue. Theser ver . respond() call immediately works through the
queue, replying with any r espondW t h() responses that we have set (or 404s otherwise).

But what HTTP requests do we have so far? The answer is that, asthe test is currently
written, we have no requests pending. Thisis where we attach our Backbone app to the
testing DOM. Initiaizing the app will generate HT TP requests ® and the DOM can then be
gueried to verify expectations.

by nless you are bootstrapping your data, in which case amanual fetch() may be needed.

135



Testing with Jasmine

Since the sinon.js server needs to be established before any requests are made and we need
to be abletoinvokeserver. respond() after our Backbone application has issued its
HTTP requests, we need another bef or eEach() setup block. Thisbef or eEach() will be
responsible for initializing the Backbone application:

describe("list view', function() {
var server = sinon.fakeServer.create();

/1 Connect the Backbone app to the DOM
bef oreEach(function() { /* Backbone initialization */ });

/! Respond to any queued AJAX calls
bef oreEach(function() { /* sinon respondWth */ });

it("lists all appointnments", function() {

expect ($("1i", "#appointnment-list").|ength).toEqual (3);
1)
1)

What does "Backbone initialization” entail? Mercifully, not much:

/1 Connect the Backbone app to the DOM
bef or eEach(function() {
wi ndow. cal endar = new Cal ($(' #cal endar'));

1)

If the test page does not already have a#cal endar €lement, it is easy enough to add:

/1 Connect the Backbone app to the DOM
bef or eEach(function() {
if ($(' #calendar').length == 0)
$(' body') . append(' <div id="cal endar"/>");
wi ndow. cal endar = new Cal ($(' #cal endar'));

1)

With all of the setup out of the way, we are finally ready to write the View code to
make the spec pass. Despite al of the setup, our core behavior remains ssimple. We
want three appointments to show up on thelist (expect ($("1i", "#appoi nt ment -
list").length).toEqual (3)).A smalishview like the following will do the trick:

136



Testing with Jasmine

var Cal endar Li st = Backbone. Vi ew. ext end( {
initialize: function(options) {
options.collection.bind('reset', this.render, this);

b
render: function() {
$(this.el).htm (
' <h2>Appoi nt nent Li st </ h2> +
‘<ol id="appointnment-list"> +
this.collection.reduce(function(neno, appoi ntnent) {
return nenmo + '<li></1i>";

bt o+

' <0| S!

)
return this;

}
1)

IMPORTANT

Using atool like sinon.js to stub out the backend can be dangerous if the backend API

is undergoing rapid change. It is quite easy to get into a situation where the backend
undergoes a breaking change, but all of the tests continue to pass. The test code would till
serve up the old JISON API, which passes when run against old code.

In practice, thisis not as fearsome as it might seem at first. First, most API changes are
non-breaking (adding an attribute or two to JSON). Second, breaking changes usualy go
hand-in-hand with major front-end changes, which will necessitate test changes anyway.
Thirdly, smoke tests of features are normally going to catch these kinds of errors.

Still not convinced? Good, paranoiais agood character trait to have when testing. If you
want to test full stack, then running your tests against a Jasmine server (from the Jasmine
Ruby gem) can allow you to run tests against Backbone code hitting areal test server.
This, however, comes at the added expense of maintaining code to build and tear down the
test server.

In addition to sinon.js, the other invaluable tool for effective testing with Jasmineis
jasmine-jquery. Thistool adds several methods to jasmine that are based on the jQuery
library. These methods are largely dedicated to making our lives easier by making Jasmine
specs more readable—both in the spec code itself and the resultant output.

137



Testing with Jasmine

Recall that we made our spec pass by adding empty list items. To verify that the list items
have the text that we expect, we will make use of the jasmine-jquery t oHaveText ()
matcher. To match text in the list view, we provide details for the document list:

describe("list view', function() {
var server = sinon.fakeServer.create()
list =]
{"title": "Appt 001", "date": "2011-10-01"},
{"title": "Appt 002", "date": "2011-11-25"},
{"title": "Appt 003", "date": "2011-12-31"}

1

it("displays appointnent titles", function() {
expect ($("' #appoi ntment-1ist')).toHaveText (/Appt 001/);

1)
1),

If we cared about the order in which our Backbone application displays the appointments,
we might write another test ensuring that the first appointment in the DOM isfrom
October. Here, it is sufficient to test that the #appoi nt ment - 1 i st element contains the
expected text: "Appt 001".

It may seem overkill to pull in an entire testing library for something as simple as

t oHaveText (). To be sure, we could have asked #appoi nt nent - | i st for itst ext ()

and then used aregular expression to match for the appointment title. The trouble with
that approach istwofold. First, the intent of the test is not as clear, hidden behind all of
that jQuery code. Second, we are just as likely to end up debugging the test as we are our
application.

Jasmine-jquery is ahuge win. Do not try to test without it.

20.2.3. Unit Testing

Unit tests, those tests that exercise behavior of individual components of an application,
arevery similar in structure to integration tests. In fact, it is easy to get the two confused.
We generadly like to follow the convention of putting the various tests into separate sub-
directories of atop-level specs' directory. Typically, these sub-directories
are named: "integration, model s, collections,andviews (thelatter three all
holding unit tests).

138



Testing with Jasmine

One way of thinking about unit testsis that we are asking how they will behave in the
presence of athing that acts like amodel, view or a collection. For instance, if we wanted
to test our appointment view in isolation, we might use a model-like thing on which the
appointment view can operate:

descri be(" Cal endar. Vi ews. Appoi nt ment ", function() {
var el = $('<div></div>")

appoi nt ment = {
title: "Title Foo',
description: 'Description bar.'

}

nodel = {

t oJSON: function() {return appointnent;}

H

it("shows the title", function() {
var Vi ewCl ass = Cal endar. Vi ews. Appoi nt ment
, view = new Vi ewCl ass({nodel: nodel, el: el});

vi ew. render () ;
expect ($(el)).toHaveText (/Titl e Foo/);

});
1)

Here, our "model" defines an object literal with a single attribute: a function that answers
tot oJSON() calls.

This particular test is not all that exciting. We have succeeded only in verifying that the
template method works:

139



Testing with Jasmine

var Cal endar = {
Views: {}

i

Cal endar . Vi ews. Appoi nt nent = Backbone. Vi ew. ext end({
tenpl ate: _.tenplate(
'<span cl ass="appointnment" title="{{ description }}"> +
<span class="title">{{title}}</span>' +
<span cl ass="del et e">X</span>" +
' </ span>'
).
render: function() {

$(this.el).htm (this.tenplate(this.nodel.toJSON()));
return this;

}
1)

Unit tests are more helpful in Backbone applications when verifying callbacks. For
example, if we click on thetitle of an appointment, we might expect that the appointment
is"activated" on the page (e.g. it now has a CSS class applied for highlighting the
selection). The simplest way to accomplish thisisto check that the element has the
"active" class enabled after aclick. A more precise way to check the behavior isto verify
that the makeAct i ve() callback isinvoked in response to the click event. For doing
something like that, we use spies:

140



Testing with Jasmine

descri be(" Vi ews. Appoi ntment”, function() ({
var el = $('<div></div>")
appointnment = { /*... */ }
nmodel = { /*... */ };

it("shows the title", function() { /*... */ });

it("makes the view active when clicked”, function() ({
var Vi ewCl ass = Cal endar. Vi ews. Appoi nt ment
, view = new Vi ewCl ass({nodel: nodel, el: el});

vi ew. render () ;

/1 Spy on the makeActive method
si non. spy(vi ew, 'makeActive');

/[l Simulate a click on the appoi nt nent
$('.title', el).click();

expect (vi ew. nakeActi ve. cal | edOnce) . t oBeTrut hy();
1)
1)

That is quite small and easy to read, but significantly helps to ease some of the worry of
"callback hell" in Backbone applications. We are now 100% certain that, whenever the
appointment is clicked, it will become active in the UI.

Trying to do something like this in an integration test would have been a morass of setup
and jQuery selectors that find the right appointment. Worst of all, we would have no way
to be certain that the appointment becomes active in response to the click event or from a
side-effect of some other event (e.g. amodel event).

Tip

Spiesin sinon.js are alittle nicer than the built-in Jasmine spies, which iswhy we
use them here.

141



Testing with Jasmine

20.3. Conclusion

Simple Backbone applications do not need tests. After writing atutorial application or
our first, smple application, it is tempting to think that we can get away without tests for
bigger Backbone applications. Aswith any codebase of significant proportions, thisis
inevitably a mistake as obvious use-cases are broken when new functionality is added.

A solid test suite goes along way toward mitigating such a situation. With the two types
of tests described here, integration and unit, we should be well prepared to weather the
growth of even the most complex Backbone applications.

142



Appendix A. Getting Started with
Jasmine

In Chapter 20, Testing with Jasmine, we discussed successful strategies for testing
Backbone applications with Jasmine 1. Here we present a brief introduction to Jasmine
itself, with an eye toward testing Backbone code.

A.l. Your First Jasmine Test

Jasmine tests are written in Javascript and ook something like:

descri be("appoi nt nents", function() {
it("popul ates the cal endar with appoi ntnents", function() ({
expect ($('# + fifteenth)).toHaveText (/Get Funky/);

o

1)

In thistest, we have a bunch of appointments that have been attached to our calendar
application. One of them indicates an appointment to get on the funk on the fifteenth of the
month 2. If this test were passing, is might look something like:

File Edit View History Bookmarks Tools Help
\;: | fFile:/ffhome/cstrom/repos/calendar/spec/SpecRunner.html A G‘l L
Jasmine 1.1.0 revision 1315677058 show B passed [J skipped
| 1 spec, 0 failures in 0.187S Finished at Sat Nov 19 2011 22:10:20 GMT-0500 (EST) run all |
Calendar run
appointments run
‘ populates the calendar with appointments run ‘

thttp://pivotal .github.com/jasmine/
’Thet oHaveText () matcher comes from the jquery-jasmine plugin [https://github.com/vel esin/jasmine-jquery]

143


http://pivotal.github.com/jasmine/
https://github.com/velesin/jasmine-jquery
https://github.com/velesin/jasmine-jquery

Getting Started with Jasmine

As can been seen, Jasmine tests are evaluated in a browser 3. Looki ng at those Jasmine
results, we can get a decent idea of what Jasmine means when it claims to facilitate BDD.
Specifically, the output of the tests almost reads like a specification.

From top to bottom, we are talking about a Calendar Backbone application. In that
calendar application, we expect that a collection of appointments will populate the
calendar with Ul representations of themselves.

We are getting ahead of ourselves of course. Since we want to be counted among the cool
kids and/or hipsters of the programming world, we want to drive the implementation of
this feature via our test. Without an appointment view class, our test fails:

File Edit View History Bookmarks Tools Help

\;D | file:///home/cstrom/repos/calendar/spec/SpecRunner.html ~ {E‘] @
Jasmine 1.1.0 revision 1315677058 show [J passed [J skipped
| 1 spec, 1 failure in 0.165 Finished at Sat Mov 19 2011 22.23:30 GMT-0500 (EST) run all |
Calendar run
a collection of appointments run
populates the calendar with appointments run
Expected '<td id="2011-11-15"><span class="day-of-month">15</span></td>' to
have text /Get Funky/.

([object Object])@file:///nome/cstrom/repos/calendar/spec/lib/jasmine-1.1.0/jasmine.js: 102
([object RegExp])@file://fhome/cstrom/repos/calendar/spec/lib/jasmine-1.1.0/jasmine.js: 1176
(y@file:///home/cstrom/repos/calendar/spec/CalendarSpec.js:61

((function () {if (jasmine.Queue.LOOP_DONT_RECURSE && calledSynchronously) {completedd~|

[>]

It fails because our Appointment view does not actually do anything:

var Appoi nt mnent = Backbone. Vi ew. ext end({});

It isaBackbone view, so it will respond tor ender () calls—but it will not actually render
anything. It hasan el property that can be inserted into the DOM, but it is an empty
<di v>. S0, of course, our test fails.

3At the time of thiswriting Firefox isthe browser that works best with Jasmine

144



Getting Started with Jasmine

If thiswere abook on BDD, we might take you through the steps of demonstrating simple
tests that get something displayed. Then, we could write a second test that verifies that
information is coming from our collection rather than being hard-coded to allow the first
test to pass. But, since thisis a Backbone book, let’s skip ahead to what is necessary to
make this test pass with data from the collection:

var Appoi nt mrent = Backbone. Vi ew. ext end({
tenplate: _.tenplate(
' <span cl ass="appointnment" title="{{ description }}">" +
<span class="title">{{title}}</span>" +
<span cl ass="del et e">X</ span>' +
' </ span>'
%
render: function() {
$(this.el).htm (this.tenplate(this.nodel.toJSON()));
return this;
}
1)

Our collection view has ultimate responsibility for inserting this individual appointment
View into the DOM at the correct location. All we have to do is ensure that the view will
include the modd’ s title.

Done and done thanks to our view class. Now we have legitimately achieved our passing
test:

File Edit View History Bookmarks Tools Help

\iD | fFile:///home/cstrom/repos/calendar/spec/SpecRunner.html hd G‘l v
Jasmine 1.1.0 revision 1315677058 Show M passed [ skipped
| 1 spec, 0 failures in 0.187S Finished at Sat Nov 19 2011 22:10:20 GMT-0500 (EST) run all |
Calendar un
appointments run
‘ populates the calendar with appointments run ‘

145



Getting Started with Jasmine

I mportant

Even if you are not adhering to the principals of BDD, you should always ensure
that removing code makestests fail. If you remove code and the test still passes,
chances are you are not testing what you think you are testing. Actually, strike that,
if you remove code and your tests still pass, then your test is worthless.

A.2. Jasmine Standalone

When first getting started with a Backbone / Jasmine test suite, the quick and dirty thing
to do is"Jasmine Standalone". This involves pointing our browser at a single web page
on the local filesystem. For instance, if we are building our application in $HOVE/ r epos/
cal endar , then we would want to load our testsat fi | e: /// horre/ daf unk/ r epos/

cal endar/ spec/ SpecRunner. htm .

The contents of the spec runner looks something like:

<head>
<l-- Jasmine files -->
<I-- Library files -->
<l-- Test helpers -->
<l-- Include spec files ... -->
<l-- Include source files ... -->
<l-- Initialize Jasm ne env -->

<script type="text/javascript">
(function() {
1. ..
PO
</script>
</ head>

146



Getting Started with Jasmine

Sincethistest isfile-based, al of those sections need to include references to other files on
the file system. For example, the jasmine files would be linked in as:

<l-- Jasmne files -->
<script type="text/javascript"

src="lib/jasm ne-1.1.0/jasm ne.js"></script>
<script type="text/javascript"

src="lib/jasm ne-1.1.0/jasm ne-htm .js"></script>

The specs themselves would be linked in as:

<l-- include spec files here... -->
<script type="text/javascript"
src="Cal endar Spec. j s"></scri pt>

<l-- include source files here... -->
<script type="text/javascript"
src="../public/javascripts/Cal endar.js"></script>

The specs and testing libraries should generally be kept in a separate directory from
the actual code. Here, we have the Jasmine test libraries and the actual test file in the
same directory while the application code being tested isin a separate publ i ¢ top-
level directory (see below for a more detailed breakdown of how these files might be
organized).

Asfor the spec itself, it should look something like:

descri be("Cal endar”, function() {
describe("the page title", function() {
it("contains the current nmonth", function() {
[* Code verifying the title */
1)
1)
1)

The first, outermost spec describes the highest level concept being tested—here the
calendar Backbone application. Inside that, we describe the specific aspect of the
application being tested—in this case, the title of the page. Finally, we have one or more
blocks that enumerate the expected behavior of the code.

Anit () block uses Jasmine "matchers" to describe the expected behavior. To describe the
expectation that the title should contain the SO 8601 date, we can write:

147



Getting Started with Jasmine

describe("the page title", function() {
it("contains the current nonth", function() {
expect ($(' hl")).toHaveText (/2011-11/);

1)

1)

At firgt, thiswill fail with an error aong the lines of:

Jasmine 1.1.0 revision 1315677058 show [ passed [ skipped

1 spec, 1 failure in 0.204s Finished at Wed Nov 23 2011 00:15:23 GMT-0500 (EST) run all

Calendar run
the page title run
contains the current month run

Expected '<h1>Funky Calendar</h1>' to have text /2011-11/.

([object Object])@file:/i/home/cstrom/repos/calendar/spec/lib/jasmine-1.1.0/jasmine.js: 102
([object RegExp])@file:///home/cstrom/repos/calendar/spec/lib/jasmine-1.1.0/jasmine.js: 1176
(J@file://home/cstrom/repos/calendar/spec/CalendarS pec.js:63

((function () {if (jasmine.Queue.LOOP_DONT_RECURSE && calledSynchronously) {completedd«|

[]

But we can make our spec pass by implementing a Backbone title view:

var TitleView = Backbone. Vi ew. ext end( {
tagNanme: 'span',
initialize: function(options) {
options. col | ection. bi nd(' cal endar: change: date', this.render, this);

$(' span. year-and-nonth', 'hl').
replaceWth(this.el);
b

render: function() {
$(this.el).htm (" (' + this.collection.getDate() + ') ');
}
)

With that, we have our passing test:

148



Getting Started with Jasmine

Jasmine 1.1.0 revision 1315677058 Show || passed [ skipped
| 1 spec, 0 failures in 0.218S  Finished at Wed Nov 23 2011 00:17:56 GMT-0500 (EST) run all |
Calendar run
the page title run
| contains the current month run‘

There are definitely times that standal one Jasmine tests are not sufficient, which is what
the next section discusses.

A.3. Jasmine (Ruby) Server

If your application grows, it will soon become too large for standalone Jasmine. The
standal one approach lacks the capability to run under a continuous integration server.
Standalone also make network requests very difficult. Thisis where the jasmine ruby gem
stepsinto the picture.

Tip

The jasmine server isimplemented in Ruby, so you will need that installed on your
system. The best resource for thisisthe "Downloads’ link on http://ruby-lang.org.

Y ou will also need the rubygems library. Despite being universal in the Ruby
community, the rubygems library is not bundled with Ruby. Y ou can find
instructions for installing rubygems at: http://docs.rubygems.org/read/chapter/3

With ruby and rubygems installed, you are ready to install the jasmine server. Per
the jasmine server instructions [ https.//github.com/pivotal/jasmine/wiki/A-ruby-
project:], installation is accomplished via two commands:

$ geminstall jasnine
$ jasnmine init

At this point the server can be run as:

$ rake jasnine

149


http://ruby-lang.org
http://docs.rubygems.org/read/chapter/3
https://github.com/pivotal/jasmine/wiki/A-ruby-project:
https://github.com/pivotal/jasmine/wiki/A-ruby-project:
https://github.com/pivotal/jasmine/wiki/A-ruby-project:

Getting Started with Jasmine

Thereisafair bit of configuration required in the Jasmine server. After installation
of the server (and assuming that we already have the Backbone application started in
Cal endar . j s), our directory structure might include the following:

### public
### javascripts
### backbone. | s
### Cal endar.js
### jquery.mn.js
### jquery-ui.mn.js
### underscore.js
## spec
### javascripts
### hel pers
#  ### jasm ne-jquery.js
#  ### sinon.js
#  ### SpecHel per.js
### Cal endar Spec. s
### support
### jasm ne_config.rb
### jasm ne_runner.rb
### | asm ne. yn

HoHHH H HHHHH R HHHHH

Libraries used by the actual application (our Backbone app and various supporting
libraries) are stored under publ i ¢/ j avascri pts. Libraries only used for testing are stored
along with the rest of the testing material under the spec/ j avascri pts/ directory.

Configuration is done amost exclusively in thej asni ne. yni configuration file. For
the most part, the defaults are sound. The exception for Backbone applicationsis the
src_fil es directive. By default, thisloads javascript source files (the things under
publ i c/javascri pts for us) in alphabetical order. Thisis disastrous for a Backbone
application because it meansthat under scor e. j s would be loaded after backbone. j s
(dittoj query.js).

To work around this, we need to explicitly layout our library filesin the same order as they
would be in the web page. Something along the lines of:

150



Getting Started with Jasmine

src_files:
- public/javascripts/jquery.mn.js
- public/javascripts/underscore.js
- public/javascripts/backbone. s
- public/javascripts/**/*.js

Thelast line instructs Jasmine to slurp up everything (Jasmine is smart enough to ignore
anything it has already |oaded).

With that, we can run our test suite—either locally or under a continuous integration server
—Dby issuing ther ake j asni ne: ci command:

# calendar git:(jasmne) rake jasm ne:c

Waiting for jasm ne server on 58538..

Waiting for jasm ne server on 58538..

Waiting for jasm ne server on 58538..

[2011-11-19 23:38:14] INFO WEBrick 1.3.1

[2011-11-19 23:38:14] INFO ruby 1.9.2 (2011-07-09) [x86_64-1i nux]
[2011-11-19 23:38:14] WARN TCPServer Error: Address already in use - bind(2)
[2011-11-19 23:38:14] INFO WEBrick:: HTTPServer#start: pid=6921 port=58538
Waiting for jasm ne server on 58538..

jasm ne server started.

Waiting for suite to finish in browser

Finished in 1.17 seconds
9 exanmples, 0 failures

It iswonderful to have areproducible test environment for al team members aswell as
for our continuous integration server. Thiswill save hours upon hours of tracking down
idiosyncrasies between different environments.

The other benefit of running the jasmine server isthat it isaserver. To seethisin action,
we can start the server with ther ake j asni ne (omitting the: ci from the continuous
integration version of the command):

151



Getting Started with Jasmine

# calendar git:(jasm ne) rake jasm ne
your tests are here:
http://1 ocal host : 8888/

[2011-11-19 23:58:02] INFO WEBrick 1.3.1

[2011-11-19 23:58:02] INFO ruby 1.9.2 (2011-07-09) [x86_64-1i nux]
[2011-11-19 23:58:02] WARN TCPServer Error: Address already in use - bind(2)
[2011-11-19 23:58:02] INFO WEBrick::HITPServer#start: pid=7077 port=8888

And, as the output instructs us, we can find our specs at http://localhost:8888/. At this
point, nothing prevents us from making real HTTP request of an application server also
listening on | ocal host . We are no longer restricted to simulating browser interaction. We
can test the real thing.

A.3.1. Continuous Integration

Tests are only useful when run on each commit. Unless you have the kind of team that is
intensely committed to manually running the Jasmine suite before each commit, you will
need a continuous integration server.

For ruby shops, the jasmine gem includes rake * commands that can be used in continuous
integration. Instead of running the server manually with r ake j asni ne, a continuous
integration server would invoke ther ake j asmi ne: ci command. The exit status and
output from this command work nicely with most continuous integration environments.

The one caveat with using the jasmine gem for continuous integration is that the jasmine
gem needs to start up an actual web browser to execute the tests. This can be difficult

to configure. There are headless alternatives to the jasmine gem. The jasmine-headless-
webkit ° is agood starting place. The PhantomJS 6 javascript environment is another.
The latter even includes ar un-j asni ne. j s script which is easily adaptable for usein a
continuous integration environment. Of the two, PhantomJS is currently better suited for
Backbone devel opment, but both are undergoing active devel opment.

“Rake is the ruby equivalent of the venerable Unix command, make
Shttp://johnbintz.github.com/jasmine-headl ess-webkit/
6http://phantomj s.org

152


http://localhost:8888/
http://johnbintz.github.com/jasmine-headless-webkit/
http://phantomjs.org

	Recipes with Backbone
	Table of Contents
	History
	Introduction
	1. Who Should Read this Book
	2. Contact Us
	3. How this Book is Organized

	Chapter 1. Writing Client Side Apps (Without Backbone)
	1.1. Working with Dates

	Chapter 2. Writing Backbone Applications
	2.1. Converting to Backbone.js
	2.2. Models
	2.3. Views
	2.4. Additional Reading
	2.5. Conclusion

	Chapter 3. Namespacing
	3.1. The Problem
	3.2. The Solution
	3.2.1. Alternative #1: Global Object Namespace
	3.2.2. Alternative #2: Javascript Function Constructor

	3.3. Conclusion

	Chapter 4. Organizing with Require.js
	4.1. The Problem
	4.2. The Solution
	4.2.1. Requiring Other Things
	4.2.2. Optimization / Asset Packaging

	4.3. Conclusion

	Chapter 5. View Templates with Underscore.js
	5.1. The Problem
	5.2. The Solution
	5.2.1. Avoid Script Tag Templates
	5.2.2. ERB Sucks {{ Use Mustache }}
	5.2.3. Avoid Evaluation

	5.3. Conclusion

	Chapter 6. Instantiated View
	6.1. Introduction
	6.2. The Problem
	6.3. The Solution
	6.4. Conclusion

	Chapter 7. Collection View
	7.1. Introduction
	7.2. The Problem
	7.3. The Solution
	7.4. Conclusion

	Chapter 8. View Signature
	8.1. Introduction
	8.2. The Problem
	8.3. The Solution
	8.3.1. What is a Signature?
	8.3.2. Signature Module
	8.3.3. A Simple Example: MD5
	8.3.4. A Fast Example: Model Data


	Chapter 9. Fill-In Rendering
	9.1. Introduction
	9.2. The Problem
	9.3. The Solution
	9.4. A Quick Refactor
	9.5. Conclusion

	Chapter 10. Actions and Animations
	10.1. Introduction
	10.2. The Problem
	10.3. The Solution
	10.4. Conclusion

	Chapter 11. Reduced Models and Collections
	11.1. Introduction
	11.2. The Problem
	11.3. The Solution
	11.3.1. Simple Solution: A View
	11.3.2. Better Solution: A Reduced Collection

	11.4. Conclusion

	Chapter 12. Non-REST Models
	12.1. Introduction
	12.2. The Problem
	12.3. The Solution
	12.3.1. Special Action
	12.3.2. Special Persistence Layer

	12.4. Conclusion

	Chapter 13. Changes Feed
	13.1. Introduction
	13.2. The Problem
	13.3. Changes feed on a Collection
	13.4. Conclusion

	Chapter 14. Pagination and Search
	14.1. Introduction
	14.2. The Problem
	14.3. The Solution
	14.3.1. Search
	14.3.2. Pagination

	14.4. Conclusion

	Chapter 15. Constructor Route
	15.1. The Problem
	15.1.1. A simple specific route

	15.2. The Solution
	15.3. Conclusion

	Chapter 16. Router Redirection
	16.1. Introduction
	16.2. The Problem
	16.3. The Solution
	16.3.1. Default Routes

	16.4. Conclusion

	Chapter 17. Evented Routers
	17.1. Introduction
	17.2. The Problem
	17.3. The Solution
	17.4. Conclusion

	Chapter 18. Object References in Backbone
	18.1. Precipitation Pattern
	18.2. Dependency Injection
	18.3. Conclusion

	Chapter 19. Custom Events
	19.1. Introduction
	19.2. The Problem
	19.3. The Solution
	19.3.1. Application Triggered Events
	19.3.2. User Triggered Events

	19.4. Conclusion

	Chapter 20. Testing with Jasmine
	20.1. The Problem
	20.2. The Solution
	20.2.1. Ingredients
	20.2.2. Integration Testing with Jasmine
	20.2.3. Unit Testing

	20.3. Conclusion

	Appendix A. Getting Started with Jasmine
	A.1. Your First Jasmine Test
	A.2. Jasmine Standalone
	A.3. Jasmine (Ruby) Server
	A.3.1. Continuous Integration



